2000 character limit reached
Localization of trace norms in two and three dimensions (2312.01101v1)
Published 2 Dec 2023 in math.NA and cs.NA
Abstract: We extend a localization result for the $H{1/2}$ norm by B. Faermann to a wider class of subspaces of $H{1/2}(\Gamma)$, and we prove an analogous result for the $H{-1/2}(\Gamma)$ norm, $\Gamma$ being the boundary of a bounded polytopal domain $\Omega$ in $\mathbb{R}n$, $n=2,3$. As a corollary, we obtain equivalent, better localized, norms for both $H{1/2}(\Gamma)$ and $H{-1/2}(\Gamma)$, which can be exploited, for instance, in the design of preconditioners or of stabilized methods.
- On the stability of the L22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT projection in H11{}^{1}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT(ฯ๐\omegaitalic_ฯ). Math. Comp, 71(237):147โ156, 2002.
- Carsten Carstensen. Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomรฉe criterion for H11{}_{1}start_FLOATSUBSCRIPT 1 end_FLOATSUBSCRIPT-stability of the L22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT-projection onto finite element spaces. Mathematics of computation, 71(237):157โ163, 2002.
- The stability in Lp๐{}_{p}start_FLOATSUBSCRIPT italic_p end_FLOATSUBSCRIPT and Wp1subscriptsuperscriptabsent1๐{}^{1}_{p}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT of the L22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT-projection onto finite element function spaces. Mathematics of computation, 48(178):521โ532, 1987.
- Birgit Faermann. Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods. Part I. The two-dimensional case. IMA journal of numerical analysis, 20(2):203โ234, 2000.
- Birgit Faermann. Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods Part II. The three-dimensional case. Numerische Mathematik, 92(3):467โ499, 2002.
- Olaf Steinbach. On a generalized L22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT projection and some related stability estimates in Sobolev spaces. Numerische Mathematik, 90(4):775โ786, 2002.