Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acoustic Signal Analysis with Deep Neural Network for Detecting Fault Diagnosis in Industrial Machines (2312.01062v1)

Published 2 Dec 2023 in cs.SD and cs.AI

Abstract: Detecting machine malfunctions at an early stage is crucial for reducing interruptions in operational processes within industrial settings. Recently, the deep learning approach has started to be preferred for the detection of failures in machines. Deep learning provides an effective solution in fault detection processes thanks to automatic feature extraction. In this study, a deep learning-based system was designed to analyze the sound signals produced by industrial machines. Acoustic sound signals were converted into Mel spectrograms. For the purpose of classifying spectrogram images, the DenseNet-169 model, a deep learning architecture recognized for its effectiveness in image classification tasks, was used. The model was trained using the transfer learning method on the MIMII dataset including sounds from four types of industrial machines. The results showed that the proposed method reached an accuracy rate varying between 97.17% and 99.87% at different Sound Noise Rate levels.

Citations (1)

Summary

We haven't generated a summary for this paper yet.