Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Object Detector Differences when using Synthetic and Real Training Data (2312.00694v1)

Published 1 Dec 2023 in cs.CV and cs.LG

Abstract: To train well-performing generalizing neural networks, sufficiently large and diverse datasets are needed. Collecting data while adhering to privacy legislation becomes increasingly difficult and annotating these large datasets is both a resource-heavy and time-consuming task. An approach to overcome these difficulties is to use synthetic data since it is inherently scalable and can be automatically annotated. However, how training on synthetic data affects the layers of a neural network is still unclear. In this paper, we train the YOLOv3 object detector on real and synthetic images from city environments. We perform a similarity analysis using Centered Kernel Alignment (CKA) to explore the effects of training on synthetic data on a layer-wise basis. The analysis captures the architecture of the detector while showing both different and similar patterns between different models. With this similarity analysis we want to give insights on how training synthetic data affects each layer and to give a better understanding of the inner workings of complex neural networks. The results show that the largest similarity between a detector trained on real data and a detector trained on synthetic data was in the early layers, and the largest difference was in the head part. The results also show that no major difference in performance or similarity could be seen between frozen and unfrozen backbone.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (3) Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. CoRR abs/1804.02767 (2018). https://doi.org/10.48550/ARXIV.1804.02767 (4) Tan, M., Pang, R., Le, Q.V.: EfficientDet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (5) Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F.A., Laganière, R., Rebut, J.: How much real data do we actually need: Analyzing object detection performance using synthetic and real data. ICML Workshop on AI for Autonomous Driving (2019) (6) Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. CoRR abs/1804.02767 (2018). https://doi.org/10.48550/ARXIV.1804.02767 (4) Tan, M., Pang, R., Le, Q.V.: EfficientDet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (5) Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F.A., Laganière, R., Rebut, J.: How much real data do we actually need: Analyzing object detection performance using synthetic and real data. ICML Workshop on AI for Autonomous Driving (2019) (6) Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tan, M., Pang, R., Le, Q.V.: EfficientDet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (5) Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F.A., Laganière, R., Rebut, J.: How much real data do we actually need: Analyzing object detection performance using synthetic and real data. ICML Workshop on AI for Autonomous Driving (2019) (6) Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F.A., Laganière, R., Rebut, J.: How much real data do we actually need: Analyzing object detection performance using synthetic and real data. ICML Workshop on AI for Autonomous Driving (2019) (6) Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  2. Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. CoRR abs/1804.02767 (2018). https://doi.org/10.48550/ARXIV.1804.02767 (4) Tan, M., Pang, R., Le, Q.V.: EfficientDet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (5) Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F.A., Laganière, R., Rebut, J.: How much real data do we actually need: Analyzing object detection performance using synthetic and real data. ICML Workshop on AI for Autonomous Driving (2019) (6) Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tan, M., Pang, R., Le, Q.V.: EfficientDet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (5) Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F.A., Laganière, R., Rebut, J.: How much real data do we actually need: Analyzing object detection performance using synthetic and real data. ICML Workshop on AI for Autonomous Driving (2019) (6) Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F.A., Laganière, R., Rebut, J.: How much real data do we actually need: Analyzing object detection performance using synthetic and real data. ICML Workshop on AI for Autonomous Driving (2019) (6) Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  3. Tan, M., Pang, R., Le, Q.V.: EfficientDet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (5) Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F.A., Laganière, R., Rebut, J.: How much real data do we actually need: Analyzing object detection performance using synthetic and real data. ICML Workshop on AI for Autonomous Driving (2019) (6) Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F.A., Laganière, R., Rebut, J.: How much real data do we actually need: Analyzing object detection performance using synthetic and real data. ICML Workshop on AI for Autonomous Driving (2019) (6) Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  4. Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F.A., Laganière, R., Rebut, J.: How much real data do we actually need: Analyzing object detection performance using synthetic and real data. ICML Workshop on AI for Autonomous Driving (2019) (6) Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  5. Dosovitskiy, A., Ros, G., Codevilla, F., López, A., Koltun, V.: CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017) (7) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  6. Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017) (8) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  7. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2017) (9) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  8. Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: International Conference on Learning Representations (ICLR) Workshop (2017) (10) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  9. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: The IEEE International Conference on Computer Vision (ICCV) (2017) (11) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  10. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833 (2014) (12) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  11. Raghu, M., Gilmer, J., Yosinski, J., Sohl-Dickstein, J.: SVCCA: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS (2017) (13) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  12. Morcos, A., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, (2018) (14) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  13. Kornblith, S., Norouzi, M., Lee, H., Hinton, G.E.: Similarity of neural network representations revisited. In: Proceedings of the 36th International Conference on Machine Learning, ICML (2019) (15) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  14. Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? In: ICML 2019 Workshop Deep Phenomena (2019) (16) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  15. Hermann, K., Lampinen, A.: What shapes feature representations? Exploring datasets, architectures, and training. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NeurIPS (2020) (17) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  16. Nguyen, T., Raghu, M., Kornblith, S.: Do wide and deep networks learn the same things? Uncovering how neural network representations vary with width and depth. In: International Conference on Learning Representations, ICLR (2021). https://openreview.net/forum?id=KJNcAkY8tY4 (18) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  17. Ge, Y., Xiao, Y., Xu, Z., Zheng, M., Karanam, S., Chen, T., Itti, L., Wu, Z.: A peek into the reasoning of neural networks: Interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2204 (2021) (19) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  18. Liu, T., Mildner, A.: Training Deep Neural Networks on Synthetic Data. Master’s Thesis (2020). http://lup.lub.lu.se/student-papers/record/9030153 (20) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  19. Ljungqvist, M.G., Nordander, O., Mildner, A., Liu, T., Nugues, P.: Object detector differences when using synthetic and real training data. In: Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 48–59. SciTePress, Setúbal, Portugal (2022). https://doi.org/10.5220/0010778200003124. INSTICC (21) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  20. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 29th International Conference on Neural Information Processing Systems, NeurIPS (2015) (22) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  21. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) (23) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  22. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (24) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  23. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4340–4349 (2016) (25) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  24. Cabon, Y., Murray, N., Humenberger, M.: Virtual KITTI 2. CoRR abs/2001.10773 (2020) 2001.10773 (26) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  25. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. International Journal of Robotics Research (IJRR) (2013) (27) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  26. Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3234–3243 (2016). https://doi.org/10.1109/CVPR.2016.352 (28) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  27. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (29) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  28. Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street scene parsing. CoRR abs/1810.08705 (2018) arXiv:1810.08705 (30) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  29. Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., Birchfield, S.: Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (2018) (31) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  30. Hattori, H., Lee, N., Boddeti, V.N., Beainy, F., Kitani, K.M., Kanade, T.: Synthesizing a scene-specific pedestrian detector and pose estimator for static video surveillance. International Journal of Computer Vision 126, 1027–1044 (2018) (32) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  31. Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K.: On pre-trained image features and synthetic images for deep learning. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018) (33) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  32. Astermark, J.: Synthesizing Training Data for Object Detection Using Generative Adversarial Networks. Master’s Thesis (2018). http://lup.lub.lu.se/student-papers/record/8966020 (34) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  33. Harrysson, O.: License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis (2019). http://lup.lub.lu.se/student-papers/record/8977867 (35) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  34. Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions. Linear Algebra, pp. 134–151. Springer, Berlin, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10 (36) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  35. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814 (37) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  36. Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: BDD100K: A diverse driving video database with scalable annotation tooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020) (38) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  37. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) (39) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  38. Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS (2019) (40) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  39. Ultralytics: Ultralytics implementation of YOLOv3. https://github.com/ultralytics/yolov3 (2019) (41) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  40. Goodfellow, I., Bengio, Y., Courville, A.: Convolutional Networks. Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org (42) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
  41. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 630–645 (2016)
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Martin Georg Ljungqvist (2 papers)
  2. Otto Nordander (1 paper)
  3. Markus Skans (1 paper)
  4. Arvid Mildner (1 paper)
  5. Tony Liu (4 papers)
  6. Pierre Nugues (6 papers)
Citations (7)