Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimal rank factorizations of polynomial matrices (2312.00676v2)

Published 1 Dec 2023 in math.NA and cs.NA

Abstract: We investigate rank revealing factorizations of $m \times n$ polynomial matrices $P(\lambda)$ into products of three, $P(\lambda) = L(\lambda) E(\lambda) R(\lambda)$, or two, $P(\lambda) = L(\lambda) R(\lambda)$, polynomial matrices. Among all possible factorizations of these types, we focus on those for which $L(\lambda)$ and/or $R(\lambda)$ is a minimal basis, since they have favorable properties from the point of view of data compression and allow us to relate easily the degree of $P(\lambda)$ with some degree properties of the factors. We call these factorizations minimal rank factorizations. Motivated by the well-known fact that, generically, rank deficient polynomial matrices over the complex field do not have eigenvalues, we pay particular attention to the properties of the minimal rank factorizations of polynomial matrices without eigenvalues. We carefully analyze the degree properties of generic minimal rank factorizations in the set of complex $m \times n$ polynomial matrices with normal rank at most $r< \min {m,n}$ and degree at most $d$, and we prove that there are only $rd+1$ different classes of generic factorizations according to the degree properties of the factors and that all of them are of the form $L(\lambda) R(\lambda)$, where the degrees of the $r$ columns of $L(\lambda)$ differ at most by one, the degrees of the $r$ rows of $R(\lambda)$ differ at most by one, and, for each $i=1, \ldots, r$, the sum of the degrees of the $i$th column of $L(\lambda)$ and of the $i$th row of $R(\lambda)$ is equal to $d$. Finally, we show how these sets of polynomial matrices with generic factorizations are related to the sets of polynomial matrices with generic eigenstructures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. Quasi-triangularization of matrix polynomials over arbitrary fields, Linear Algebra Appl. 665 (2023) 61–106.
  2. F. De Terán and F. M. Dopico, Low rank perturbation of Kronecker structures without full rank, SIAM J. Matrix Anal. Appl. 29 (2007) 496–529.
  3. F. De Terán and F. M. Dopico, Generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations, SIAM J. Matrix Anal. Appl. 37 (2016) 823–835.
  4. F. De Terán, F. M. Dopico and J. M. Landsberg, An explicit description of the irreducible components of the set of matrix pencils with bounded normal rank, Linear Algebra Appl. 520 (2017) 80–103.
  5. F. De Terán, F. M. Dopico and D. S. Mackey, Spectral equivalence of matrix polynomials and the index sum theorem, Linear Algebra Appl. 459 (2014) 264–333.
  6. Polynomial zigzag matrices, dual minimal bases, and the realization of completely singular polynomials, Linear Algebra Appl. 488 (2016) 460–504.
  7. F. De Terán, F. M. Dopico and P. Van Dooren, Matrix polynomials with completely prescribed eigenstructure, SIAM J. Matrix Anal. Appl. 36 (2015) 302–328.
  8. F. De Terán, C. Mehl and V. Mehrmann, Low-rank perturbation of regular matrix pencils with symmetry structures, Found. Comput. Math. 22 (2022) 257–311.
  9. A. Dmytryshyn and F. M. Dopico, Generic complete eigenstructures for sets of matrix polynomials with bounded rank and degree, Linear Algebra Appl. 535 (2017) 213–230.
  10. Robustness and perturbations of minimal bases II: The case with given row degrees, Linear Algebra Appl. 576 (2019) 268–300.
  11. G. D. Forney, Minimal bases of rational vector spaces, with applications to multivariable linear systems, SIAM J. Control 13 (1975) 493–520.
  12. F. R. Gantmacher, The Theory of Matrices, Vol. I and II (transl.), Chelsea, New York, 1959.
  13. G. H. Golub and C. F. Van Loan, Matrix Computations, 4th Ed., Johns Hopkins University Press, Baltimore, MD, 2013.
  14. T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, NJ, 1980.
  15. D. S. Mackey, Minimal indices and minimal bases via filtrations, Electron. J. Linear Algebra 37 (2021) 276–294.
  16. Structured polynomial eigenvalue problems: Good vibrations from good linearizations, SIAM J. Matrix Anal. Appl. 28 (2006) 1029-1051.
  17. P. Van Dooren and P. Dewilde, The eigenstructure of an arbitrary polynomial matrix: computational aspects, Linear Algebra Appl. 50 (1983) 545-579.
  18. G. Verghese, P. Van Dooren and T. Kailath, Properties of the system matrix of a generalized state-space system, Internat. J. Control 30 (1979) 235–243.
  19. W. A. Wolovich, Linear Multivariable Systems, Springer-Verlag, New York-Heidelberg, 1974.

Summary

We haven't generated a summary for this paper yet.