Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design Patterns for Machine Learning Based Systems with Human-in-the-Loop (2312.00582v1)

Published 1 Dec 2023 in cs.SE

Abstract: The development and deployment of systems using supervised ML remain challenging: mainly due to the limited reliability of prediction models and the lack of knowledge on how to effectively integrate human intelligence into automated decision-making. Humans involvement in the ML process is a promising and powerful paradigm to overcome the limitations of pure automated predictions and improve the applicability of ML in practice. We compile a catalog of design patterns to guide developers select and implement suitable human-in-the-loop (HiL) solutions. Our catalog takes into consideration key requirements as the cost of human involvement and model retraining. It includes four training patterns, four deployment patterns, and two orthogonal cooperation patterns.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. F. Ishikawa and N. Yoshioka, “How do engineers perceive difficulties in engineering of machine-learning systems? - questionnaire survey,” in 2019 IEEE/ACM Joint 7th International Workshop on Conducting Empirical Studies in Industry (CESI) and 6th International Workshop on Software Engineering Research and Industrial Practice (SER&IP).   IEEE, 2019, pp. 2–9, https://doi.org/10.1109/CESSER-IP.2019.00009.
  2. W. Maalej, Y. D. Pham, and L. Chazette, “Tailoring requirements engineering for responsible ai,” Computer, vol. 56, no. 4, pp. 18–27, 2023, https://doi.org/10.1109/MC.2023.3243182.
  3. E. Beede, E. Baylor, F. Hersch, A. Iurchenko, L. Wilcox, P. Ruamviboonsuk, and L. M. Vardoulakis, “A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy,” in Proceedings of the 2020 CHI conference on human factors in computing systems, 2020, pp. 1–12, https://doi.org/10.1145/3313831.3376718.
  4. A. Holzinger, “Interactive machine learning for health informatics: when do we need the human-in-the-loop?” Brain Informatics, vol. 3, no. 2, pp. 119–131, 2016, https://doi.org/10.1007/s40708-016-0042-6.
  5. H. Washizaki, F. Khomh, Y.-G. Guéhéneuc, H. Takeuchi, N. Natori, T. Doi, and S. Okuda, “Software-engineering design patterns for machine learning applications,” Computer, vol. 55, no. 3, pp. 30–39, 2022, https://doi.org/10.1109/MC.2021.3137227.
  6. B. Settles, “Active learning literature survey,” Science, vol. 10, no. 3, pp. 237–304, 1995.
  7. J. Bernard, M. Zeppelzauer, M. Sedlmair, and W. Aigner, “Vial: a unified process for visual interactive labeling,” The Visual Computer: International Journal of Computer Graphics, vol. 34, no. 9, pp. 1189–1207, 2018, https://doi.org/10.1007/s00371-018-1500-3.
  8. J. M. Attenberg, P. G. Ipeirotis, and F. Provost, “Beat the machine: Challenging workers to find the unknown unknowns,” in Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011, https://doi.org/10.1145/2700832.
  9. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
  10. S. Sengupta, T. Chakraborti, S. Sreedharan, S. G. Vadlamudi, and S. Kambhampati, “Radar—a proactive decision support system for human-in-the-loop planning,” in 2017 AAAI Fall Symposium Series, 2017.
  11. J. S. Andersen and W. Maalej, “Efficient, uncertainty-based moderation of neural networks text classifiers,” in Findings of the Association for Computational Linguistics: ACL 2022, 2022, pp. 1536–1546, https://doi.org/10.18653/v1/2022.findings-acl.121.
  12. R. M. Shukla and J. Cartlidge, “Agileml: A machine learning project development pipeline incorporating active consumer engagement,” in 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE).   IEEE, 2021, pp. 1–7, https://doi.org/10.1109/CSDE53843.2021.9718470.
  13. T. Karmakharm, N. Aletras, and K. Bontcheva, “Journalist-in-the-loop: Continuous learning as a service for rumour analysis,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations, 2019, pp. 115–120, https://doi.org/10.18653/v1/D19-3020.
  14. M. Espadoto, R. M. Martins, A. Kerren, N. S. Hirata, and A. C. Telea, “Toward a quantitative survey of dimension reduction techniques,” IEEE transactions on visualization and computer graphics, vol. 27, no. 3, pp. 2153–2173, 2019, https://doi.org/10.1109/TVCG.2019.2944182.
  15. W. Loosen, M. Häring, Z. Kurtanović, L. Merten, J. Reimer, L. v. Roessel, and W. Maalej, “Making sense of user comments: Identifying journalists’ requirements for a comment analysis framework,” SCM Studies in Communication and Media, vol. 6, no. 4, pp. 333–364, 2017, http://doi.org/10.5771/2192-4007-2017-4-333.
  16. U. Bhatt, A. Xiang, S. Sharma, A. Weller, A. Taly, Y. Jia, J. Ghosh, R. Puri, J. M. Moura, and P. Eckersley, “Explainable machine learning in deployment,” in Proceedings of the 2020 conference on fairness, accountability, and transparency, 2020, pp. 648–657, https://doi.org/10.1145/3351095.3375624.
  17. B. Plank, “The “problem” of human label variation: On ground truth in data, modeling and evaluation,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.   Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, 2022, pp. 10 671–10 682, {https://doi.org/10.18653/v1/2022.emnlp-main.731}.
Citations (2)

Summary

We haven't generated a summary for this paper yet.