Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum principles for nonlinear integro-differential equations and symmetry of solutions (2312.00469v1)

Published 1 Dec 2023 in math.AP

Abstract: In this paper, we study the semilinear integro-differential equations \begin{equation*} \mathcal{L}{K}u(x)\equiv C_n\text{P.V.}\int{\Rn}\left(u(x)-u(y)\right)K(x-y)dy=f(x,u), \end{equation*} and the full nonlinear integro-differential equations \begin{equation*} F_{G,K}u(x)\equiv C_n\text{P.V.}\int_{\Rn}G(u(x)-u(y))K(x-y)dy=f(x,u), \end{equation*} where $K(\cdot)$ is a symmetric jumping kernel and $K(\cdot)\geq C|\cdot|{-n-\alpha}$, $G(\cdot)$ is some nonlinear function without non-degenerate condition. We adopt the direct method of moving planes to study the symmetry and monotonicity of solutions for the integro-differential equations, and investigate the limit of some non-local operators $\mathcal{L}_{K}$ as $\alpha\to2.$ Our results extended some results obtained in \cite{CL} and \cite{CLLG}.

Summary

We haven't generated a summary for this paper yet.