Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Control Functionals for Interconnected Time-Delay Systems (2312.00315v1)

Published 1 Dec 2023 in eess.SY, cs.SY, and math.OC

Abstract: Safety is essential for autonomous systems, in particular for interconnected systems in which the interactions among subsystems are involved. Motivated by the recent interest in cyber-physical and interconnected autonomous systems, we address the safe stabilization problem of interconnected systems with time delays. We propose multiple control Lyapunov and barrier functionals for the stabilization and safety control problems, respectively. In order to investigate the safe stabilization control problem, the proposed multiple control functionals are combined together via two methods: the optimization-based method and the sliding mode based method. The resulting controllers can be of either explicit or implicit forms, both of which ensure the safe stabilization objective of the whole system. The derived results are illustrated via a reach-avoid problem of multi-robot systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. F. Bonilla, T. Holzer, and S. Sarkani, “Complexity measure for engineering systems incorporating system states and behavior,” IEEE Syst. J., vol. 15, no. 4, pp. 4792–4803, 2020.
  2. S. Coogan and M. Arcak, “A dissipativity approach to safety verification for interconnected systems,” IEEE Trans. Autom. Control, vol. 60, no. 6, pp. 1722–1727, 2014.
  3. J. Guiochet, M. Machin, and H. Waeselynck, “Safety-critical advanced robots: A survey,” Robot. Auton. Syst., vol. 94, pp. 43–52, 2017.
  4. X. Fang, L. Xie, and X. Li, “Integrated relative-measurement-based network localization and formation maneuver control,” IEEE Trans. Autom. Control, 2023.
  5. F. Ferraguti, C. T. Landi, A. Singletary, H.-C. Lin, A. Ames, C. Secchi, and M. Bonfè, “Safety and efficiency in robotics: the control barrier functions approach,” IEEE Robot. Autom. Mag., vol. 29, no. 3, pp. 139–151, 2022.
  6. E. Fridman, “Tutorial on lyapunov-based methods for time-delay systems,” Eur. J. Control, vol. 20, no. 6, pp. 271–283, 2014.
  7. A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, 2016.
  8. L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for collisions-free multirobot systems,” IEEE Trans. Robot., vol. 33, no. 3, pp. 661–674, 2017.
  9. D. Panagou, D. M. Stipanović, and P. G. Voulgaris, “Distributed coordination control for multi-robot networks using Lyapunov-like barrier functions,” IEEE Trans. Autom. Control, vol. 61, no. 3, pp. 617–632, 2015.
  10. W. Ren, J. Li, J. Xiong, and X.-M. Sun, “Vector control Lyapunov and barrier functions for safe stabilization of interconnected systems,” SIAM J. Control. Optim., vol. 61, no. 5, pp. 3209–3233, 2023.
  11. Z. Lyu, X. Xu, and Y. Hong, “Small-gain theorem for safety verification of interconnected systems,” Automatica, vol. 139, p. 110178, 2022.
  12. W. Ren, R. M. Jungers, and D. V. Dimarogonas, “Razumikhin and Krasovskii approaches for safe stabilization,” Automatica, vol. 146, p. 110563, 2022.
  13. W. Ren, “Razumikhin-type control Lyapunov and barrier functions for time-delay systems,” in Proc. IEEE Conf. Decis. Control. IEEE, 2021, pp. 5471–5476.
  14. T. N. Pham, H. Trinh, and A. M. T. Oo, “Distributed control of HVDC links for primary frequency control of time-delay power systems,” IEEE Trans. Power Syst., vol. 34, no. 2, pp. 1301–1314, 2018.
  15. V. Giammarino, S. Baldi, P. Frasca, and M. L. Delle Monache, “Traffic flow on a ring with a single autonomous vehicle: An interconnected stability perspective,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 4998–5008, 2020.
  16. E. J. Rodríguez-Seda, J. J. Troy, C. A. Erignac, P. Murray, D. M. Stipanovic, and M. W. Spong, “Bilateral teleoperation of multiple mobile agents: Coordinated motion and collision avoidance,” IEEE Trans. Control Syst. Technol., vol. 18, no. 4, pp. 984–992, 2009.
  17. M. Di Ferdinando and P. Pepe, “Robustification of sample-and-hold stabilizers for control-affine time-delay systems,” Automatica, vol. 83, pp. 141–154, 2017.
  18. S. Dashkovskiy, H. Ito, and F. Wirth, “On a small gain theorem for ISS networks in dissipative Lyapunov form,” Eur. J. Control, vol. 17, no. 4, pp. 357–365, 2011.
  19. E. D. Sontag, “A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization,” Syst. Control Lett., vol. 13, no. 2, pp. 117–123, 1989.
  20. L. Wang, A. Ames, and M. Egerstedt, “Safety barrier certificates for heterogeneous multi-robot systems,” in Proc. Am. Control Conf. IEEE, 2016, pp. 5213–5218.
  21. P. Pepe and Z.-P. Jiang, “A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems,” Syst. Control. Lett., vol. 55, no. 12, pp. 1006–1014, 2006.

Summary

We haven't generated a summary for this paper yet.