Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wasserstein GANs are Minimax Optimal Distribution Estimators (2311.18613v1)

Published 30 Nov 2023 in math.ST and stat.TH

Abstract: We provide non asymptotic rates of convergence of the Wasserstein Generative Adversarial networks (WGAN) estimator. We build neural networks classes representing the generators and discriminators which yield a GAN that achieves the minimax optimal rate for estimating a certain probability measure $\mu$ with support in $\mathbb{R}p$. The probability $\mu$ is considered to be the push forward of the Lebesgue measure on the $d$-dimensional torus $\mathbb{T}d$ by a map $g\star:\mathbb{T}d\rightarrow \mathbb{R}p$ of smoothness $\beta+1$. Measuring the error with the $\gamma$-H\"older Integral Probability Metric (IPM), we obtain up to logarithmic factors, the minimax optimal rate $O(n{-\frac{\beta+\gamma}{2\beta +d}}\vee n{-\frac{1}{2}})$ where $n$ is the sample size, $\beta$ determines the smoothness of the target measure $\mu$, $\gamma$ is the smoothness of the IPM ($\gamma=1$ is the Wasserstein case) and $d\leq p$ is the intrinsic dimension of $\mu$. In the process, we derive a sharp interpolation inequality between H\"older IPMs. This novel result of theory of functions spaces generalizes classical interpolation inequalities to the case where the measures involved have densities on different manifolds.

Citations (2)

Summary

We haven't generated a summary for this paper yet.