Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Technical Debt Management Automation: State of the Art and Future Perspectives (2311.18449v1)

Published 30 Nov 2023 in cs.SE

Abstract: Technical Debt (TD) refers to non-optimal decisions made in software projects that may lead to short-term benefits, but potentially harm the system's maintenance in the long-term. Technical debt management (TDM) refers to a set of activities that are performed to handle TD, e.g., identification. These activities can entail tasks such as code and architectural analysis, which can be time-consuming if done manually. Thus, substantial research work has focused on automating TDM tasks (e.g., automatic identification of code smells). However, there is a lack of studies that summarize current approaches in TDM automation. This can hinder practitioners in selecting optimal automation strategies to efficiently manage TD. It can also prevent researchers from understanding the research landscape and addressing the research problems that matter the most. Thus, the main objective of this study is to provide an overview of the state of the art in TDM automation, analyzing the available tools, their use, and the challenges in automating TDM. For this, we conducted a systematic mapping study (SMS), and from an initial set of 1086 primary studies, 178 were selected to answer three research questions covering different facets of TDM automation. We found 121 automation artifacts, which were classified in 4 different types (i.e., tools, plugins, scripts, and bots); the inputs/outputs and interfaces were also collected and reported. Finally, a conceptual model is proposed that synthesizes the results and allows to discuss the current state of TDM automation and related challenges. The results show that the research community has investigated to a large extent how to perform various TDM activities automatically, considering the number of studies and automation artifacts we identified. More research is needed towards fully automated TDM, specially concerning the integration of the automation artifacts.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. doi:10.1145/157709.157715. URL https://doi.org/10.1145/157709.157715
  2. doi:10.5220/0007675900950106. URL https://doi.org/10.5220/0007675900950106
  3. doi:10.1007/978-3-030-00761-4_21. URL https://doi.org/10.1007/978-3-030-00761-4_21
  4. doi:10.1145/1985362.1985370. URL https://doi.org/10.1145/1985362.1985370
  5. doi:10.1109/MTD.2012.6225996. URL https://doi.org/10.1109/MTD.2012.6225996
  6. doi:10.1007/978-3-642-38314-4_9. URL https://doi.org/10.1007/978-3-642-38314-4_9
  7. doi:10.1109/MTD.2015.7332619.
  8. doi:10.1007/978-3-031-08965-7_14. URL https://doi.org/10.1007/978-3-031-08965-7_14
  9. doi:10.1002/0471028959.sof142. URL https://doi.org/10.1002/0471028959.sof142
  10. doi:10.1109/ase51524.2021.9678680. URL https://doi.org/10.1109/ase51524.2021.9678680
  11. doi:10.1145/2601248.2601268. URL https://doi.org/10.1145/2601248.2601268
  12. doi:https://doi.org/10.1016/j.infsof.2020.106294. URL https://www.sciencedirect.com/science/article/pii/S0950584920300446
  13. doi:10.1145/3487043. URL https://doi.org/10.1145/3487043
  14. doi:10.1145/2884781.2884833. URL https://doi.org/10.1145/2884781.2884833
  15. doi:10.1007/s11219-013-9200-8. URL https://doi.org/10.1007/s11219-013-9200-8
  16. doi:10.1186/s40411-017-0041-1. URL https://doi.org/10.1186/s40411-017-0041-1
  17. doi:10.1109/icsme.2019.00090. URL https://doi.org/10.1109/icsme.2019.00090
  18. doi:10.1145/2896935.2896938. URL https://doi.org/10.1145/2896935.2896938
  19. doi:10.1109/WICSA.2016.37. URL https://doi.org/10.1109/WICSA.2016.37
  20. doi:10.1145/3510455.3512783.
  21. doi:10.1186/s13173-018-0083-1. URL https://doi.org/10.1186/s13173-018-0083-1
  22. doi:10.1007/s10664-021-10031-3. URL https://doi.org/10.1007/s10664-021-10031-3
  23. doi:10.1007/978-3-031-04580-6_23. URL https://doi.org/10.1007/978-3-031-04580-6_23
  24. doi:10.1109/seaa51224.2020.00082. URL https://doi.org/10.1109/seaa51224.2020.00082
  25. doi:10.2139/ssrn.4160012. URL https://doi.org/10.2139/ssrn.4160012
  26. doi:10.1109/TechDebt.2019.00024. URL https://doi.org/10.1109/TechDebt.2019.00024
  27. doi:10.1007/s10664-023-10297-9. URL https://doi.org/10.1007/s10664-023-10297-9
  28. doi:https://doi.org/10.1016/j.infsof.2018.10.006. URL https://www.sciencedirect.com/science/article/pii/S0950584918302106
  29. doi:https://doi.org/10.1016/j.infsof.2015.03.007. URL https://www.sciencedirect.com/science/article/pii/S0950584915000646
Citations (1)

Summary

We haven't generated a summary for this paper yet.