Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PAUNet: Precipitation Attention-based U-Net for rain prediction from satellite radiance data (2311.18306v1)

Published 30 Nov 2023 in physics.ao-ph and cs.LG

Abstract: This paper introduces Precipitation Attention-based U-Net (PAUNet), a deep learning architecture for predicting precipitation from satellite radiance data, addressing the challenges of the Weather4cast 2023 competition. PAUNet is a variant of U-Net and Res-Net, designed to effectively capture the large-scale contextual information of multi-band satellite images in visible, water vapor, and infrared bands through encoder convolutional layers with center cropping and attention mechanisms. We built upon the Focal Precipitation Loss including an exponential component (e-FPL), which further enhanced the importance across different precipitation categories, particularly medium and heavy rain. Trained on a substantial dataset from various European regions, PAUNet demonstrates notable accuracy with a higher Critical Success Index (CSI) score than the baseline model in predicting rainfall over multiple time slots. PAUNet's architecture and training methodology showcase improvements in precipitation forecasting, crucial for sectors like emergency services and retail and supply chain management.

Summary

We haven't generated a summary for this paper yet.