Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparsifying generalized linear models (2311.18145v1)

Published 29 Nov 2023 in cs.DS and math.FA

Abstract: We consider the sparsification of sums $F : \mathbb{R}n \to \mathbb{R}$ where $F(x) = f_1(\langle a_1,x\rangle) + \cdots + f_m(\langle a_m,x\rangle)$ for vectors $a_1,\ldots,a_m \in \mathbb{R}n$ and functions $f_1,\ldots,f_m : \mathbb{R} \to \mathbb{R}_+$. We show that $(1+\varepsilon)$-approximate sparsifiers of $F$ with support size $\frac{n}{\varepsilon2} (\log \frac{n}{\varepsilon}){O(1)}$ exist whenever the functions $f_1,\ldots,f_m$ are symmetric, monotone, and satisfy natural growth bounds. Additionally, we give efficient algorithms to compute such a sparsifier assuming each $f_i$ can be evaluated efficiently. Our results generalize the classic case of $\ell_p$ sparsification, where $f_i(z) = |z|p$, for $p \in (0, 2]$, and give the first near-linear size sparsifiers in the well-studied setting of the Huber loss function and its generalizations, e.g., $f_i(z) = \min{|z|p, |z|2}$ for $0 < p \leq 2$. Our sparsification algorithm can be applied to give near-optimal reductions for optimizing a variety of generalized linear models including $\ell_p$ regression for $p \in (1, 2]$ to high accuracy, via solving $(\log n){O(1)}$ sparse regression instances with $m \le n(\log n){O(1)}$, plus runtime proportional to the number of nonzero entries in the vectors $a_1, \dots, a_m$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.