Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Emergence of multiphase condensates from a limited set of chemical building blocks (2311.18142v3)

Published 29 Nov 2023 in cond-mat.soft, physics.bio-ph, and q-bio.BM

Abstract: Biomolecules composed of a limited set of chemical building blocks can co-localize into distinct, spatially segregated compartments known as biomolecular condensates. While many condensates are known to form spontaneously via phase separation, it has been unclear how immiscible condensates with precisely controlled molecular compositions assemble from a small number of chemical building blocks. We address this question by establishing a connection between the specificity of biomolecular interactions and the thermodynamic stability of coexisting condensates. By computing the minimum interaction specificity required to assemble condensates with target molecular compositions, we show how to design heteropolymer mixtures that produce compositionally complex condensates using only a small number of monomer types. Our results provide insight into how compositional specificity arises in naturally occurring multicomponent condensates and demonstrate a rational algorithm for engineering complex artificial condensates from simple chemical building blocks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).
  2. C. Eckart and G. Young, Psychometrika 1, 211–218 (1936).
  3. S. P. Boyd and L. Vandenberghe, Convex optimization (Cambridge University Press, 2004).
  4. S. Diamond and S. Boyd, J. Mach. Learn. Res. 17, 2909 (2016).
  5. F. Chen and W. M. Jacobs, J. Chem. Phys. 158, 214118 (2023).
  6. B. Recht, M. Fazel, and P. A. Parrilo, SIAM Review 52, 471–501 (2010).
  7. Z. Yang and E. Oja, Pattern Recognition 45, 1500 (2012).
  8. J. SantaLucia, Proc. Natl. Acad. Sci. U.S.A. 95, 1460 (1998).
  9. S. C. Glotzer and M. J. Solomon, Nat. Mater. 6, 557 (2007).
  10. J. E. Lennard-Jones, Proc. Royal Soc. A 106, 463–477 (1924).
  11. K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057–5086 (1990).
  12. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
  13. R. H. Colby and M. Rubinstein, Polymer physics (Oxford University Press, 2003).
  14. J.-P. Hansen and I. R. McDonald, Theory of simple liquids: With applications to soft matter (Academic Press, 2013).
  15. E. Darve, D. Rodríguez-Gómez, and A. Pohorille, J. Chem. Phys. 128 (2008).
  16. T. Li, W. B. Rogers, and W. M. Jacobs, Phys. Rev. E 108, 064501 (2023).
  17. W. M. Jacobs, J. Chem. Theory Comput. 19, 3429 (2023).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.