Emergent Mind


Large Language Models (LLMs) exhibit powerful summarization abilities. However, their capabilities on conversational summarization remains under explored. In this work we evaluate LLMs (approx. 10 billion parameters) on conversational summarization and showcase their performance on various prompts. We show that the summaries generated by models depend on the instructions and the performance of LLMs vary with different instructions sometimes resulting steep drop in ROUGE scores if prompts are not selected carefully. We also evaluate the models with human evaluations and discuss the limitations of the models on conversational summarization

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a detailed summary of this paper with a premium account.

We ran into a problem analyzing this paper.

Please try again later (sorry!).

Get summaries of trending AI papers delivered straight to your inbox

Unsubscribe anytime.

Test Your Knowledge

You answered out of questions correctly.

Well done!