2000 character limit reached
An Efficient Algorithm for Unbalanced 1D Transportation (2311.17704v2)
Published 29 Nov 2023 in cs.PF, cs.CC, and cs.DS
Abstract: Optimal transport (OT) and unbalanced optimal transport (UOT) are central in many machine learning, statistics and engineering applications. 1D OT is easily solved, with complexity O(n log n), but no efficient algorithm was known for 1D UOT. We present a new approach that leverages the successive shortest path algorithm for the corresponding network flow problem. By employing a suitable representation, we bundle together multiple steps that do not change the cost of the shortest path. We prove that our algorithm solves 1D UOT in O(n log n), closing the gap.
- Nicolas Papadakis “Optimal Transport for Image Processing”, 2015 URL: https://hal.science/tel-01246096
- F. Pitie, A.C. Kokaram and R. Dahyot “N-dimensional probability density function transfer and its application to color transfer” ISSN: 2380-7504 In Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1 2, 2005, pp. 1434–1439 Vol. 2 DOI: 10.1109/ICCV.2005.166
- “A survey of Optimal Transport for Computer Graphics and Computer Vision” In Computer Graphics Forum, 2023 URL: https://hal.science/hal-04029613
- “Recognizing objects in adversarial clutter: breaking a visual CAPTCHA” ISSN: 1063-6919 In 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings. 1, 2003, pp. I–I DOI: 10.1109/CVPR.2003.1211347
- “Shape context and chamfer matching in cluttered scenes” ISSN: 1063-6919 In 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings. 1, 2003, pp. I–I DOI: 10.1109/CVPR.2003.1211346
- E.N. Mortensen, Hongli Deng and L. Shapiro “A SIFT descriptor with global context” ISSN: 1063-6919 In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 1, 2005, pp. 184–190 vol. 1 DOI: 10.1109/CVPR.2005.45
- “PCA-SIFT: a more distinctive representation for local image descriptors” ISSN: 1063-6919 In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. 2, 2004, pp. II–II DOI: 10.1109/CVPR.2004.1315206
- David G. Lowe “Distinctive Image Features from Scale-Invariant Keypoints” In International Journal of Computer Vision 60.2, 2004, pp. 91–110 DOI: 10.1023/B:VISI.0000029664.99615.94
- “SPOT: sliced partial optimal transport” In ACM Transactions on Graphics 38.4, 2019, pp. 1–13 DOI: 10.1145/3306346.3323021
- “Sliced Optimal Partial Transport” arXiv:2212.08049 [cs, math, stat] arXiv, 2023 DOI: 10.48550/arXiv.2212.08049
- “Faster and better global placement by a new transportation algorithm” ISSN: 0738-100X In Proceedings. 42nd Design Automation Conference, 2005., 2005, pp. 591–596 DOI: 10.1145/1065579.1065733
- Gabriel Gouvine “Coloquinte: a mixed-size placer for the Coriolis toolchain”, 2015 URL: https://hal.archives-ouvertes.fr/hal-03437834
- Thibault Séjourné, François-Xavier Vialard and Gabriel Peyré “Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe” arXiv:2201.00730 [cs, math] arXiv, 2022 DOI: 10.48550/arXiv.2201.00730
- “Wasserstein propagation for semi-supervised learning” In Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32, ICML’14 Beijing, China: JMLR.org, 2014, pp. I–306–I–314
- Grégoire Montavon, Klaus-Robert Müller and Marco Cuturi “Wasserstein Training of Boltzmann Machines” arXiv:1507.01972 [cs, stat] arXiv, 2015 DOI: 10.48550/arXiv.1507.01972
- Martin Arjovsky, Soumith Chintala and Léon Bottou “Wasserstein GAN” arXiv:1701.07875 [cs, stat] arXiv, 2017 DOI: 10.48550/arXiv.1701.07875
- Huidong Liu, Xianfeng Gu and Dimitris Samaras “Wasserstein GAN With Quadratic Transport Cost” ISSN: 2380-7504 In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 4831–4840 DOI: 10.1109/ICCV.2019.00493
- “Wasserstein Auto-Encoders” arXiv:1711.01558 [cs, stat] arXiv, 2019 DOI: 10.48550/arXiv.1711.01558
- “Learning with a Wasserstein Loss” arXiv:1506.05439 [cs, stat] arXiv, 2015 DOI: 10.48550/arXiv.1506.05439
- “Computational Optimal Transport” arXiv:1803.00567 [stat] arXiv, 2020 DOI: 10.48550/arXiv.1803.00567
- “POT: Python Optimal Transport” In Journal of Machine Learning Research 22.78, 2021, pp. 1–8 URL: http://jmlr.org/papers/v22/20-451.html
- James Orlin “A faster strongly polynomial minimum cost flow algorithm” In Proceedings of the twentieth annual ACM symposium on Theory of computing, STOC ’88 New York, NY, USA: Association for Computing Machinery, 1988, pp. 377–387 DOI: 10.1145/62212.62249
- “Small Manhattan Networks and Algorithmic Applications for the Earth Mover’s Distance”, 2007 URL: https://people.scs.carleton.ca/~michiel/l1spanner.pdf
- Marco Cuturi “Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances” arXiv:1306.0895 [stat] arXiv, 2013 DOI: 10.48550/arXiv.1306.0895
- Rainer E. Burkard, Bettina Klinz and Rüdiger Rudolf “Perspectives of Monge properties in optimization” In Discrete Applied Mathematics 70.2, 1996, pp. 95–161 DOI: 10.1016/0166-218X(95)00103-X
- “Efficient minimum cost matching using quadrangle inequality” In Proceedings., 33rd Annual Symposium on Foundations of Computer Science, 1992, pp. 583–592 DOI: 10.1109/SFCS.1992.267793
- Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart “Exploring Network Structure, Dynamics, and Function using NetworkX” In Proceedings of the 7th Python in Science Conference, 2008, pp. 11–15