Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Efficient Algorithm for Unbalanced 1D Transportation (2311.17704v2)

Published 29 Nov 2023 in cs.PF, cs.CC, and cs.DS

Abstract: Optimal transport (OT) and unbalanced optimal transport (UOT) are central in many machine learning, statistics and engineering applications. 1D OT is easily solved, with complexity O(n log n), but no efficient algorithm was known for 1D UOT. We present a new approach that leverages the successive shortest path algorithm for the corresponding network flow problem. By employing a suitable representation, we bundle together multiple steps that do not change the cost of the shortest path. We prove that our algorithm solves 1D UOT in O(n log n), closing the gap.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Nicolas Papadakis “Optimal Transport for Image Processing”, 2015 URL: https://hal.science/tel-01246096
  2. F. Pitie, A.C. Kokaram and R. Dahyot “N-dimensional probability density function transfer and its application to color transfer” ISSN: 2380-7504 In Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1 2, 2005, pp. 1434–1439 Vol. 2 DOI: 10.1109/ICCV.2005.166
  3. “A survey of Optimal Transport for Computer Graphics and Computer Vision” In Computer Graphics Forum, 2023 URL: https://hal.science/hal-04029613
  4. “Recognizing objects in adversarial clutter: breaking a visual CAPTCHA” ISSN: 1063-6919 In 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings. 1, 2003, pp. I–I DOI: 10.1109/CVPR.2003.1211347
  5. “Shape context and chamfer matching in cluttered scenes” ISSN: 1063-6919 In 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings. 1, 2003, pp. I–I DOI: 10.1109/CVPR.2003.1211346
  6. E.N. Mortensen, Hongli Deng and L. Shapiro “A SIFT descriptor with global context” ISSN: 1063-6919 In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 1, 2005, pp. 184–190 vol. 1 DOI: 10.1109/CVPR.2005.45
  7. “PCA-SIFT: a more distinctive representation for local image descriptors” ISSN: 1063-6919 In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. 2, 2004, pp. II–II DOI: 10.1109/CVPR.2004.1315206
  8. David G. Lowe “Distinctive Image Features from Scale-Invariant Keypoints” In International Journal of Computer Vision 60.2, 2004, pp. 91–110 DOI: 10.1023/B:VISI.0000029664.99615.94
  9. “SPOT: sliced partial optimal transport” In ACM Transactions on Graphics 38.4, 2019, pp. 1–13 DOI: 10.1145/3306346.3323021
  10. “Sliced Optimal Partial Transport” arXiv:2212.08049 [cs, math, stat] arXiv, 2023 DOI: 10.48550/arXiv.2212.08049
  11. “Faster and better global placement by a new transportation algorithm” ISSN: 0738-100X In Proceedings. 42nd Design Automation Conference, 2005., 2005, pp. 591–596 DOI: 10.1145/1065579.1065733
  12. Gabriel Gouvine “Coloquinte: a mixed-size placer for the Coriolis toolchain”, 2015 URL: https://hal.archives-ouvertes.fr/hal-03437834
  13. Thibault Séjourné, François-Xavier Vialard and Gabriel Peyré “Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe” arXiv:2201.00730 [cs, math] arXiv, 2022 DOI: 10.48550/arXiv.2201.00730
  14. “Wasserstein propagation for semi-supervised learning” In Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32, ICML’14 Beijing, China: JMLR.org, 2014, pp. I–306–I–314
  15. Grégoire Montavon, Klaus-Robert Müller and Marco Cuturi “Wasserstein Training of Boltzmann Machines” arXiv:1507.01972 [cs, stat] arXiv, 2015 DOI: 10.48550/arXiv.1507.01972
  16. Martin Arjovsky, Soumith Chintala and Léon Bottou “Wasserstein GAN” arXiv:1701.07875 [cs, stat] arXiv, 2017 DOI: 10.48550/arXiv.1701.07875
  17. Huidong Liu, Xianfeng Gu and Dimitris Samaras “Wasserstein GAN With Quadratic Transport Cost” ISSN: 2380-7504 In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 4831–4840 DOI: 10.1109/ICCV.2019.00493
  18. “Wasserstein Auto-Encoders” arXiv:1711.01558 [cs, stat] arXiv, 2019 DOI: 10.48550/arXiv.1711.01558
  19. “Learning with a Wasserstein Loss” arXiv:1506.05439 [cs, stat] arXiv, 2015 DOI: 10.48550/arXiv.1506.05439
  20. “Computational Optimal Transport” arXiv:1803.00567 [stat] arXiv, 2020 DOI: 10.48550/arXiv.1803.00567
  21. “POT: Python Optimal Transport” In Journal of Machine Learning Research 22.78, 2021, pp. 1–8 URL: http://jmlr.org/papers/v22/20-451.html
  22. James Orlin “A faster strongly polynomial minimum cost flow algorithm” In Proceedings of the twentieth annual ACM symposium on Theory of computing, STOC ’88 New York, NY, USA: Association for Computing Machinery, 1988, pp. 377–387 DOI: 10.1145/62212.62249
  23. “Small Manhattan Networks and Algorithmic Applications for the Earth Mover’s Distance”, 2007 URL: https://people.scs.carleton.ca/~michiel/l1spanner.pdf
  24. Marco Cuturi “Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances” arXiv:1306.0895 [stat] arXiv, 2013 DOI: 10.48550/arXiv.1306.0895
  25. Rainer E. Burkard, Bettina Klinz and Rüdiger Rudolf “Perspectives of Monge properties in optimization” In Discrete Applied Mathematics 70.2, 1996, pp. 95–161 DOI: 10.1016/0166-218X(95)00103-X
  26. “Efficient minimum cost matching using quadrangle inequality” In Proceedings., 33rd Annual Symposium on Foundations of Computer Science, 1992, pp. 583–592 DOI: 10.1109/SFCS.1992.267793
  27. Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart “Exploring Network Structure, Dynamics, and Function using NetworkX” In Proceedings of the 7th Python in Science Conference, 2008, pp. 11–15

Summary

We haven't generated a summary for this paper yet.