2000 character limit reached
Static and LRS spacetimes of type II in $f(\mathcal{Q})$ gravity (2311.17669v2)
Published 29 Nov 2023 in gr-qc, math-ph, and math.MP
Abstract: We investigate the $1+1+2$ covariant formalism in the presence of nonmetricity. Focusing on static and Locally Rotationally Symmetric spacetimes, we show how nonmetricity affects all the kinematic quantities involved in the covariant $1+1+2$ decomposition. We apply the resulting geometrical framework to study spherically symmetric solutions in the context of $f(\mathcal{Q})$ gravity in vacuum. We obtain explicit solutions and sufficient conditions for the existence of Schwarzschild-de Sitter type solutions.
- S. Capozziello and M. De Laurentis, Phys. Rept. 509, 167 (2011).
- T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010).
- S. Nojiri and S. D. Odintsov, Phys. Rept. 505, 59 (2011).
- S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Phys. Rept. 692, 1 (2017).
- T. Kobayashi, Rept. Prog. Phys. 82, 086901 (2019).
- J. M. Nester and H.-J. Yo, Chin. J. Phys. 37, 113 (1999).
- M. Adak, M. Kalay, and O. Sert, Int. J. Mod. Phys. D15, 619 (2006).
- A. Conroy and T. Koivisto, Eur. Phys. J. C 78, 923 (2018).
- J. B. Jiménez, L. Heisenberg, and T. S. Koivisto, Phys. Rev. D 98, 044048 (2018).
- F. Esposito, S. Carloni, and S. Vignolo, Class. Quant. Grav. 39, 235014 (2022b).
- F. D’Ambrosio, L. Heisenberg, and S. Kuhn, Class. Quant. Grav. 39, 025013 (2022a).
- G. N. Gadbail, S. Mandal, and P. K. Sahoo, Phys. Lett. B 835, 137509 (2022).
- I. S. Albuquerque and N. Frusciante, Phys. Dark Univ. 35, 100980 (2022).
- S. Capozziello and R. D’Agostino, Phys. Lett. B 832, 137229 (2022).
- A. S. Agrawal, B. Mishra, and P. K. Agrawal, Eur. Phys. J. C 83, 113 (2023).
- G. Mustafa, Z. Hassan, and P. K. Sahoo, Annals Phys. 437, 168751 (2022).
- D. Iosifidis, C. G. Tsagas, and A. C. Petkou, Phys. Rev. D 98, 104037 (2018).
- S. Capozziello, V. De Falco, and C. Ferrara, Eur. Phys. J. C 82, 865 (2022).
- A. Paliathanasis, Phys. Dark Univ. 41, 101255 (2023a).
- L. Heisenberg, (2023), arXiv:2309.15958 .
- D. Zhao, Eur. Phys. J. C 82, 303 (2022).
- R.-H. Lin and X.-H. Zhai, Phys. Rev. D 103, 124001 (2021), [Erratum: Phys.Rev.D 106, 069902 (2022)].
- M. Calzá and L. Sebastiani, Eur. Phys. J. C 83, 247 (2023).
- M. Hohmann, Phys. Rev. D 104, 124077 (2021).
- A. Paliathanasis, Symmetry 15, 529 (2023b).
- S. Bahamonde, J. Chevrier, and J. Gigante Valcarcel, JCAP 02, 018.
- J. M. Stewart and G. F. R. Ellis, J. Math. Phys. 9, 1072 (1968).
- H. van Elst and G. F. R. Ellis, Class. Quant. Grav. 13, 1099 (1996).
- C. A. Clarkson and R. K. Barrett, Class. Quant. Grav. 20, 3855 (2003).
- C. Clarkson, Phys. Rev. D 76, 104034 (2007).
- P. Luz and S. Carloni, Phys. Rev. D 100, 084037 (2019).
- N. F. Naidu, S. Carloni, and P. Dunsby, Phys. Rev. D 106, 124023 (2022).
- X. Roy, (2014), arXiv:1405.6319 [gr-qc] .
- E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge University Press, 2004).
- P. O. Mazur and E. Mottola, Universe 9, 88 (2023).
- W. Israel, Il Nuovo Cimento B (1965-1970) 44, 1 (1966).
- Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick, Analysis (Gulf Professional Publishing, 1982).
- A. Taub, Journal of Mathematical Physics 21, 1423 (1980).
- S. Carloni and D. Vernieri, Physical Review D 97, 10.1103/physrevd.97.124056 (2018).
- J. L. Rosa and S. Carloni, Junction conditions for general lrs spacetimes in the 1+1+21121+1+21 + 1 + 2 covariant formalism (2023), arXiv:2303.12457 [gr-qc] .
- S. Vignolo, R. Cianci, and S. Carloni, Class. Quant. Grav. 35, 095014 (2018).
- D. R. Brill and J. B. Hartle, Physical Review 135, B271 (1964).
- P. R. Anderson and D. R. Brill, Physical Review D 56, 4824 (1997).
- J. D. McCrea, Class. Quant. Grav. 9, 553 (1992).
- A. Jiménez Cano, Metric-affine Gauge theories of gravity. Foundations and new insights, Ph.D. thesis, Granada U., Theor. Phys. Astrophys. (2021), arXiv:2201.12847 [gr-qc] .