Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Composable Constraint Models for Permutation Enumeration (2311.17581v4)

Published 29 Nov 2023 in cs.DM and math.CO

Abstract: Constraint programming (CP) is a powerful tool for modeling mathematical concepts and objects and finding both solutions or counter examples. One of the major strengths of CP is that problems can easily be combined or expanded. In this paper, we illustrate that this versatility makes CP an ideal tool for exploring problems in permutation patterns. We declaratively define permutation properties, permutation pattern avoidance and containment constraints using CP and show how this allows us to solve a wide range of problems. We show how this approach enables the arbitrary composition of these conditions, and also allows the easy addition of extra conditions. We demonstrate the effectiveness of our techniques by modelling the containment and avoidance of six permutation patterns, eight permutation properties and measuring five statistics on the resulting permutations. In addition to calculating properties and statistics for the generated permutations, we show that arbitrary additional constraints can also be easily and efficiently added. This approach enables mathematicians to investigate permutation pattern problems in a quick and efficient manner. We demonstrate the utility of constraint programming for permutation patterns by showing how we can easily and efficiently extend the known permutation counts for a conjecture involving the class of $1324$ avoiding permutations. For this problem, we expand the enumeration of $1324$-avoiding permutations with a fixed number of inversions to permutations of length 16 and show for the first time that in the enumeration there is a pattern occurring which follows a unique sequence on the Online Encyclopedia of Integer Sequences.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Conjure: Automatic generation of constraint models from problem specifications. Artificial Intelligence, 310:103751, 2022.
  2. Enumeration of set-theoretic solutions to the yang-baxter equation. Math. Comput., 91(335):1469–1481, 2022. doi:10.1090/MCOM/3696. URL https://doi.org/10.1090/mcom/3696.
  3. M. Albert. Permlab: Software for permutation patterns, 2012. URL https://github.com/mchllbrt/PermCode.
  4. Patternclass–permutation pattern classes, 2012. URL https://gap-packages.github.io/PatternClass/.
  5. Permuta, Apr. 2021. URL https://doi.org/10.5281/zenodo.4725759.
  6. M. D. Atkinson. Restricted permutations. Discret. Math., 195(1-3):27–38, 1999. doi:10.1016/S0012-365X(98)00162-9. URL https://doi.org/10.1016/S0012-365X(98)00162-9.
  7. Avoidance of boxed mesh patterns on permutations. Discrete Applied Mathematics, 161(1-2):43–51, Jan. 2013. ISSN 0166-218X. doi:10.1016/j.dam.2012.08.015.
  8. E. Babson and E. Steingrímsson. Generalized permutation patterns and a classification of the mahonian statistics. Séminaire Lotharingien de Combinatoire [electronic only], 44:B44b–18, 2000.
  9. Blockwise simple permutations, 2023.
  10. (2+ 2)-free posets, ascent sequences and pattern avoiding permutations. Journal of Combinatorial Theory, Series A, 117(7):884–909, 2010.
  11. P. Brändén and A. Claesson. Mesh patterns and the expansion of permutation statistics as sums of permutation patterns. The Electronic Journal of Combinatorics, pages P5–P5, 2011.
  12. R. Brignall. A survey of simple permutations. Permutation patterns, 376:41–65, 2010.
  13. Upper bounds for the stanley–wilf limit of 1324 and other layered patterns. Journal of Combinatorial Theory, Series A, 119(8):1680–1691, 2012. ISSN 0097-3165. doi:https://doi.org/10.1016/j.jcta.2012.05.006. URL https://www.sciencedirect.com/science/article/pii/S0097316512000891.
  14. The semigroups of order 10. In M. Milano, editor, Principles and Practice of Constraint Programming, pages 883–899, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-33558-7.
  15. Essence: A constraint language for specifying combinatorial problems. Constraints, 13(3):268–306, 2008.
  16. GAP. GAP – Groups, Algorithms, and Programming, Version 4.12.2. The GAP Group, 2022. URL https://www.gap-system.org.
  17. Minion: A fast scalable constraint solver. In ECAI, pages 98–102, 2006.
  18. D. E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms. Addison-Wesley, 1968.
  19. H. Magnusson and H. Ulfarsson. Algorithms for discovering and proving theorems about permutation patterns. arXiv preprint arXiv:1211.7110, 2012.
  20. A. Marcus and G. Tardos. Excluded permutation matrices and the stanley–wilf conjecture. Journal of Combinatorial Theory, Series A, 107(1):153–160, 2004.
  21. Automatically improving constraint models in savile row. Artificial Intelligence, 251:35–61, 2017.
  22. OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2023. Published electronically at http://oeis.org.
  23. R. Simion and F. W. Schmidt. Restricted permutations. European Journal of Combinatorics, 6(4):383–406, 1985.
  24. Combinatorial specification searcher (permutaTriangle/comb_spec_searcher): Version 4.0.0, June 2021. URL https://doi.org/10.5281/zenodo.4946832.
  25. stacs-cp/composable-permutation-patterns, Nov. 2023. URL https://doi.org/10.5281/zenodo.10215929.

Summary

We haven't generated a summary for this paper yet.