Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multithreaded parallelism for heterogeneous clusters of QPUs (2311.17490v1)

Published 29 Nov 2023 in quant-ph and cs.DC

Abstract: In this work, we present MILQ, a quantum unrelated parallel machines scheduler and cutter. The setting of unrelated parallel machines considers independent hardware backends, each distinguished by differing setup and processing times. MILQ optimizes the total execution time of a batch of circuits scheduled on multiple quantum devices. It leverages state-of-the-art circuit-cutting techniques to fit circuits onto the devices and schedules them based on a mixed-integer linear program. Our results show a total improvement of up to 26 % compared to a baseline approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th annual symposium on foundations of computer science.   Santa Fe, NM, USA: IEEE, 1994, pp. 124–134. [Online]. Available: https://doi.org/10.1109/SFCS.1994.365700
  2. A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A, vol. 86, p. 032324, Sep 2012. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.86.032324
  3. M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, “Superconducting qubits: Current state of play,” Annual Review of Condensed Matter Physics, vol. 11, no. 1, pp. 369–395, 2020. [Online]. Available: https://doi.org/10.1146/annurev-conmatphys-031119-050605
  4. X. Wu, X. Liang, Y. Tian, F. Yang, C. Chen, Y.-C. Liu, M. K. Tey, and L. You, “A concise review of rydberg atom based quantum computation and quantum simulation*,” Chinese Physics B, vol. 30, no. 2, p. 020305, feb 2021. [Online]. Available: https://dx.doi.org/10.1088/1674-1056/abd76f
  5. C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion quantum computing: Progress and challenges,” Applied Physics Reviews, vol. 6, no. 2, p. 021314, 05 2019. [Online]. Available: https://doi.org/10.1063/1.5088164
  6. M. Bandic, L. Prielinger, J. Nüßlein, A. Ovide, S. Rodrigo, S. Abadal, H. van Someren, G. Vardoyan, E. Alarcon, C. G. Almudever, and S. Feld, “Mapping quantum circuits to modular architectures with qubo,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2305.06687
  7. D. Bhoumik, R. Majumdar, A. Saha, and S. Sur-Kolay, “Distributed scheduling of quantum circuits with noise and time optimization,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2309.06005
  8. R. Graham, E. Lawler, J. Lenstra, and A. Kan, “Optimization and approximation in deterministic sequencing and scheduling: a survey,” in Discrete Optimization II, ser. Annals of Discrete Mathematics, P. Hammer, E. Johnson, and B. Korte, Eds.   Elsevier, 1979, vol. 5, pp. 287–326. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S016750600870356X
  9. L. Fanjul-Peyro and R. Ruiz, “Size-reduction heuristics for the unrelated parallel machines scheduling problem,” Comput. Oper. Res., vol. 38, no. 1, p. 301–309, jan 2011. [Online]. Available: https://doi.org/10.1016/j.cor.2010.05.005
  10. F. J. Rodriguez, M. Lozano, C. Blum, and C. García-Martínez, “An iterated greedy algorithm for the large-scale unrelated parallel machines scheduling problem,” Comput. Oper. Res., vol. 40, no. 7, p. 1829–1841, jul 2013. [Online]. Available: https://doi.org/10.1016/j.cor.2013.01.018
  11. I. M. Al-harkan and A. A. Qamhan, “Optimize unrelated parallel machines scheduling problems with multiple limited additional resources, sequence-dependent setup times and release date constraints,” IEEE Access, vol. 7, pp. 171 533–171 547, 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2955975
  12. J. K. Lenstra, D. B. Shmoys, and É. Tardos, “Approximation algorithms for scheduling unrelated parallel machines,” Mathematical Programming, vol. 46, no. 1, pp. 259–271, Jan 1990. [Online]. Available: https://doi.org/10.1007/BF01585745
  13. C. Glass, C. Potts, and P. Shade, “Unrelated parallel machine scheduling using local search,” Mathematical and Computer Modelling, vol. 20, no. 2, pp. 41–52, 1994. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0895717794902054
  14. A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility for resource management,” in Job Scheduling Strategies for Parallel Processing, D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44–60. [Online]. Available: https://doi.org/10.1007/10968987_3
  15. T. S. Humble, A. McCaskey, D. I. Lyakh, M. Gowrishankar, A. Frisch, and T. Monz, “Quantum computers for high-performance computing,” IEEE Micro, vol. 41, no. 5, p. 15–23, sep 2021. [Online]. Available: https://doi.org/10.1109/MM.2021.3099140
  16. T. Peng, A. W. Harrow, M. Ozols, and X. Wu, “Simulating large quantum circuits on a small quantum computer,” Phys. Rev. Lett., vol. 125, p. 150504, Oct 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.125.150504
  17. K. Mitarai and K. Fujii, “Constructing a virtual two-qubit gate by sampling single-qubit operations,” New Journal of Physics, vol. 23, no. 2, p. 023021, feb 2021. [Online]. Available: https://dx.doi.org/10.1088/1367-2630/abd7bc
  18. C. Ufrecht, M. Periyasamy, S. Rietsch, D. D. Scherer, A. Plinge, and C. Mutschler, “Cutting multi-control quantum gates with ZX calculus,” Quantum, vol. 7, p. 1147, Oct. 2023. [Online]. Available: https://doi.org/10.22331/q-2023-10-23-1147
  19. H. Harada, K. Wada, and N. Yamamoto, “Optimal parallel wire cutting without ancilla qubits,” 2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.2303.07340
  20. Qiskit contributors, “Qiskit: An open-source framework for quantum computing,” 2023. [Online]. Available: https://zenodo.org/doi/10.5281/zenodo.2573505
  21. L. Bello, A. M. Brańczyk, S. Bravyi, A. Carrera Vazquez, A. Eddins, D. J. Egger, B. Fuller, J. Gacon, J. R. Garrison, J. R. Glick, T. P. Gujarati, I. Hamamura, A. I. Hasan, T. Imamichi, C. Johnson, I. Liepuoniute, O. Lockwood, M. Motta, C. D. Pemmaraju, P. Rivero, M. Rossmannek, T. L. Scholten, S. Seelam, I. Sitdikov, D. Subramanian, W. Tang, and S. Woerner, “Circuit Knitting Toolbox,” 2023. [Online]. Available: https://zenodo.org/doi/10.5281/zenodo.7987996
  22. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com
  23. D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, and A. Browaeys, “Synthetic three-dimensional atomic structures assembled atom by atom,” Nature, vol. 561, no. 7721, pp. 79–82, Sep 2018. [Online]. Available: https://doi.org/10.1038/s41586-018-0450-2
  24. N. Quetschlich, L. Burgholzer, and R. Wille, “MQT Bench: Benchmarking Software and Design Automation Tools for Quantum Computing,” Quantum, vol. 7, p. 1062, Jul. 2023. [Online]. Available: https://doi.org/10.22331/q-2023-07-20-1062
  25. B. S. Baker, “A new proof for the first-fit decreasing bin-packing algorithm,” Journal of Algorithms, vol. 6, no. 1, pp. 49–70, 1985. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0196677485900185
  26. J. Gambetta. (2022) Expanding the ibm quantum roadmap to anticipate the future of quantum-centric supercomputing. [Online]. Available: https://research.ibm.com/blog/ibm-quantum-roadmap-2025
Citations (1)

Summary

We haven't generated a summary for this paper yet.