Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sub-Riemannian Random Walks: From Connections to Retractions (2311.17289v1)

Published 29 Nov 2023 in math.PR and math.DG

Abstract: We study random walks on sub-Riemannian manifolds using the framework of retractions, i.e., approximations of normal geodesics. We show that such walks converge to the correct horizontal Brownian motion if normal geodesics are approximated to at least second order. In particular, we (i) provide conditions for convergence of geodesic random walks defined with respect to normal, compatible, and partial connections and (ii) provide examples of computationally efficient retractions, e.g., for simulating anisotropic Brownian motion on Riemannian manifolds.

Summary

We haven't generated a summary for this paper yet.