Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An iterative equation solver with low sensitivity on the initial value (2311.17269v1)

Published 28 Nov 2023 in math.NA, cs.CE, and cs.NA

Abstract: The objective of this publication is to reduce the sensitivity of iterative equation solvers on the initial value. To this end, at the hand of Newton's method, we exemplify how to reformulate the initial problem by means of a set of generalized moment generating functions. The approach allows to choose that very function, which is best approximated by a linear function and thus allows to set up an efficient iteration procedure. As a result of this, the number of iterations required to meet a given precision goal is significantly reduced in comparison to Newton's method especially for large deviations between the initial value and the actual root. At the hand of seven academic examples and three applications we demonstrate that the computing time of the discussed approach reveals a far lower susceptibility on the initial value when compared to results from Newton's method. This insensitivity offers the prospect to implement iterative equation solvers for applications with strict real-time requirements such as power system simulation or on-demand control algorithms on embedded systems with low computing power. We are confident that the devised methodology may be generalized to other well-established iteration algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. doi:10.1145/321850.321860. URL https://doi.org/10.1145/321850.321860
  2. doi:https://doi.org/10.1016/S0096-3003(03)00282-0. URL https://www.sciencedirect.com/science/article/pii/S0096300303002820
  3. doi:https://doi.org/10.1016/j.amc.2005.04.045. URL https://www.sciencedirect.com/science/article/pii/S009630030500367X
  4. doi:https://doi.org/10.1016/j.amc.2005.11.055. URL https://www.sciencedirect.com/science/article/pii/S0096300305009860
  5. doi:10.1007/s00211-006-0025-2. URL https://doi.org/10.1007/s00211-006-0025-2
  6. doi:10.1109/ACCESS.2021.3091473. URL https://ieeexplore.ieee.org/document/9462087
  7. doi:https://doi.org/10.1016/j.rico.2022.100157. URL https://www.sciencedirect.com/science/article/pii/S2666720722000340
  8. doi:https://doi.org/10.1016/j.rico.2023.100243. URL https://www.sciencedirect.com/science/article/pii/S2666720723000450
  9. doi:https://doi.org/10.1016/j.aml.2013.10.008. URL https://www.sciencedirect.com/science/article/pii/S0893965913002930
  10. doi:https://doi.org/10.1016/j.amc.2009.01.047. URL https://www.sciencedirect.com/science/article/pii/S0096300309000861
  11. doi:10.1109/ACCESS.2022.3150775. URL https://ieeexplore.ieee.org/document/9709846
  12. doi:10.3390/math7010055. URL https://www.mdpi.com/2227-7390/7/1/55
  13. doi:10.3390/math7070655. URL https://www.mdpi.com/2227-7390/7/7/655
  14. doi:https://doi.org/10.1016/j.aml.2006.11.010. URL https://www.sciencedirect.com/science/article/pii/S0893965907000389
  15. doi:10.3390/axioms8020055. URL https://www.mdpi.com/2075-1680/8/2/55
  16. doi:https://doi.org/10.1016/j.rico.2023.100270. URL https://www.sciencedirect.com/science/article/pii/S2666720723000723
  17. doi:10.1007/s11075-009-9345-5. URL https://link.springer.com/article/10.1007/s11075-009-9345-5
  18. doi:https://doi.org/10.1016/j.amc.2011.10.057. URL https://www.sciencedirect.com/science/article/pii/S0096300311013038
  19. doi:https://doi.org/10.1016/j.amc.2017.07.078. URL https://www.sciencedirect.com/science/article/pii/S0096300317305398
  20. doi:https://doi.org/10.1016/j.cam.2017.04.021. URL https://www.sciencedirect.com/science/article/pii/S0377042717301917
  21. doi:10.3390/math8010108. URL https://www.mdpi.com/2227-7390/8/1/108
  22. doi:10.3390/sym15010228. URL https://www.mdpi.com/2073-8994/15/1/228
  23. doi:10.1080/27690911.2022.2130914. URL https://doi.org/10.1080/27690911.2022.2130914
  24. doi:10.3390/sym14102020. URL https://www.mdpi.com/2073-8994/14/10/2020
  25. doi:10.1109/DS-RT52167.2021.9576157. URL https://ieeexplore.ieee.org/document/9576157
  26. doi:10.3390/en13051148. URL https://www.mdpi.com/1996-1073/13/5/1148
  27. doi:10.1088/1742-6596/2385/1/012073. URL https://dx.doi.org/10.1088/1742-6596/2385/1/012073
  28. doi:https://doi.org/10.1007/978-3-658-30995-4$_$43. URL https://link.springer.com/chapter/10.1007/978-3-658-30995-4$_$43
  29. doi:10.1162/089976699300016467. URL https://doi.org/10.1162/089976699300016467
  30. doi:10.1162/089976600300015033. URL https://doi.org/10.1162/089976600300015033
  31. doi:10.1109/JPROC.2020.2991885. URL https://ieeexplore.ieee.org/document/9106347
  32. doi:10.1109/MSP.2022.3157460. URL https://ieeexplore.ieee.org/document/9810030
  33. doi:https://doi.org/10.1016/j.combustflame.2018.04.013. URL https://www.sciencedirect.com/science/article/pii/S0010218018301652
  34. doi:10.1017/S0080454100006804. URL https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/abs/xlthe-linear-differencedifferential-equation-with-constant-coefficients/304AD0A6F962DCC23770FC2117D11070
  35. doi:10.1109/TAC.2008.919549. URL https://ieeexplore.ieee.org/abstract/document/4484215
  36. doi:https://doi.org/10.1016/j.solmat.2004.07.004. URL https://www.sciencedirect.com/science/article/pii/S0927024804002867
  37. A. Kapoor, Erratum to “a new approach to study organic solar cell using lambert w-function”: [solar energy materials and solar cells 86 (2005) 197–205], Solar Energy Materials and Solar Cells 90 (1) (2006) 120. doi:https://doi.org/10.1016/j.solmat.2005.04.024. URL https://www.sciencedirect.com/science/article/pii/S0927024805001194
  38. doi:https://doi.org/10.1016/j.solmat.2003.11.018. URL https://www.sciencedirect.com/science/article/pii/S0927024803002605
  39. doi:https://doi.org/10.1016/j.mseb.2009.02.013. URL https://www.sciencedirect.com/science/article/pii/S092151070900097X
  40. doi:https://doi.org/10.1016/j.ces.2006.04.003. URL https://www.sciencedirect.com/science/article/pii/S0009250906002508
  41. doi:https://doi.org/10.1016/j.applthermaleng.2015.12.125. URL https://www.sciencedirect.com/science/article/pii/S1359431116000168
  42. doi:https://doi.org/10.1016/B978-044452845-2/50005-7. URL https://www.sciencedirect.com/science/article/pii/B9780444528452500057
  43. doi:https://doi.org/10.1007/s38313-014-0147-3. URL https://link.springer.com/article/10.1007/s38313-014-0147-3
  44. doi:https://doi.org/10.1007/978-3-319-47196-9$_$2. URL https://link.springer.com/chapter/10.1007/978-3-319-47196-9$_$2
  45. doi:10.1007/978-3-540-77877-6$_$4. URL https://doi.org/10.1007/978-3-540-77877-6$_$4
  46. doi:https://doi.org/10.1016/j.rico.2022.100121. URL https://www.sciencedirect.com/science/article/pii/S2666720722000157

Summary

We haven't generated a summary for this paper yet.