Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ordinals and recursively defined functions on the reals (2311.17210v3)

Published 28 Nov 2023 in math.LO and cs.DM

Abstract: Given a function $f:\mathbb R\to\mathbb R$, call a decreasing sequence $x_1>x_2>x_3>\cdots$ $f$-bad if $f(x_1)>f(x_2)>f(x_3)>\cdots$, and call the function $f$ "ordinal decreasing" if there exist no infinite $f$-bad sequences. We prove the following result, which generalizes results of Erickson et al. (2022) and Bufetov et al. (2024): Given ordinal decreasing functions $f,g_1,\ldots,g_k,s$ that are everywhere larger than $0$, define the recursive algorithm "$M(x)$: if $x<0$ return $f(x)$, else return $g_1(-M(x-g_2(-M(x-\cdots-g_k(-M(x-s(x)))\cdots))))$". Then $M(x)$ halts and is ordinal decreasing for all $x \in \mathbb{R}$. More specifically, given an ordinal decreasing function $f$, denote by $o(f)$ the ordinal height of the root of the tree of $f$-bad sequences. Then we prove that, for $k\ge 2$, the function $M(x)$ defined by the above algorithm satisfies $o(M)\le\varphi_{k-1}(\gamma+o(s)+1)$, where $\gamma$ is the smallest ordinal such that $\max{{o(s),o(f),o(g_1), \ldots, o(g_k)}}<\varphi_{k-1}(\gamma)$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. Harry J. Altman. Intermediate arithmetic operations on ordinal numbers. Mathematical Logic Quarterly, 63(3-4):228–242, 2017.
  2. Program termination and well partial orderings. ACM Trans. Comput. Logic, 9(3), 2008.
  3. Generalized fusible numbers and their ordinals. Annals of Pure and Applied Logic, 175(1, Part A), 2024.
  4. Pete L. Clark. The instructor’s guide to real induction, 2012. arXiv e-prints, math.HO, 1208.0973.
  5. Dick H. J. de Jongh and Rohit Parikh. Well-partial orderings and hierarchies. Indagationes Mathematicae, 39:195–206, 1977.
  6. Jeff Erickson. Fusible numbers. https://www.mathpuzzle.com/fusible.pdf.
  7. Fusible numbers and Peano Arithmetic. Logical Methods in Computer Science, 18(3), 2022.
  8. F. P. Ramsey. On a problem of formal logic. Proc. Lond. Math. Soc., S2–30:264–286, 1930.
  9. Proof-theoretic investigations on Kruskal’s theorem. Annals of Pure and Applied Logic, 60(1):49–88, 1993.
  10. Junyan Xu. Survey on fusible numbers, 2012. arXiv e-prints, math.CO, 1202.5614.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com