Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VILLS -- Video-Image Learning to Learn Semantics for Person Re-Identification (2311.17074v7)

Published 27 Nov 2023 in cs.CV

Abstract: Person Re-identification is a research area with significant real world applications. Despite recent progress, existing methods face challenges in robust re-identification in the wild, e.g., by focusing only on a particular modality and on unreliable patterns such as clothing. A generalized method is highly desired, but remains elusive to achieve due to issues such as the trade-off between spatial and temporal resolution and imperfect feature extraction. We propose VILLS (Video-Image Learning to Learn Semantics), a self-supervised method that jointly learns spatial and temporal features from images and videos. VILLS first designs a local semantic extraction module that adaptively extracts semantically consistent and robust spatial features. Then, VILLS designs a unified feature learning and adaptation module to represent image and video modalities in a consistent feature space. By Leveraging self-supervised, large-scale pre-training, VILLS establishes a new State-of-The-Art that significantly outperforms existing image and video-based methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.