Multiparameter critical quantum metrology with impurity probes (2311.16931v2)
Abstract: Quantum systems can be used as probes in the context of metrology for enhanced parameter estimation. In particular, the delicacy of critical systems to perturbations can make them ideal sensors. Arguably the simplest realistic probe system is a spin-1/2 impurity, which can be manipulated and measured in-situ when embedded in a fermionic environment. Although entanglement between a single impurity probe and its environment produces nontrivial many-body effects, criticality cannot be leveraged for sensing. Here we introduce instead the two-impurity Kondo (2IK) model as a novel paradigm for critical quantum metrology, and examine the multiparameter estimation scenario at finite temperature. We explore the full metrological phase diagram numerically and obtain exact analytic results near criticality. Enhanced sensitivity to the inter-impurity coupling driving a second-order phase transition is evidenced by diverging quantum Fisher information (QFI) and quantum signal-to-noise ratio (QSNR). However, with uncertainty in both coupling strength and temperature, the multiparameter QFI matrix becomes singular -- even though the parameters to be estimated are independent -- resulting in vanishing QSNRs. We demonstrate that by applying a known control field, the singularity can be removed and measurement sensitivity restored. For general systems, we show that the degradation in the QSNR due to uncertainties in another parameter is controlled by the degree of correlation between the unknown parameters.
- C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
- D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond bell’s theorem,” in Bell’s theorem, quantum theory and conceptions of the universe (Springer, 1989) pp. 69–72.
- V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
- D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, “Toward heisenberg-limited spectroscopy with multiparticle entangled states,” Science 304, 1476–1478 (2004).
- R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, “The elusive heisenberg limit in quantum-enhanced metrology,” Nat. Commun. (2012), 10.1038/ncomms2067.
- A. De Pasquale, D. Rossini, P. Facchi, and V. Giovannetti, “Quantum parameter estimation affected by unitary disturbance,” Phys. Rev. A 88, 052117 (2013).
- L. Campos Venuti and P. Zanardi, “Quantum critical scaling of the geometric tensors,” Phys. Rev. Lett. 99, 095701 (2007).
- D. Schwandt, F. Alet, and S. Capponi, “Quantum monte carlo simulations of fidelity at magnetic quantum phase transitions,” Phys. Rev. Lett. 103, 170501 (2009).
- A. F. Albuquerque, F. Alet, C. Sire, and S. Capponi, “Quantum critical scaling of fidelity susceptibility,” Phys. Rev. B 81, 064418 (2010).
- V. Gritsev and A. Polkovnikov, “Universal dynamics near quantum critical points,” (2010), arXiv:0910.3692 [cond-mat.stat-mech] .
- S.J. Gu, H.M. Kwok, W.Q. Ning, and H.Q. Lin, “Fidelity susceptibility, scaling, and universality in quantum critical phenomena,” Phys. Rev. B 77, 245109 (2008).
- S. Greschner, A. K. Kolezhuk, and T. Vekua, “Fidelity susceptibility and conductivity of the current in one-dimensional lattice models with open or periodic boundary conditions,” Phys. Rev. B 88, 195101 (2013).
- I. Frérot and T. Roscilde, “Quantum critical metrology,” Phys. Rev. Lett. 121, 020402 (2018).
- H. Zhou, J. Choi, S. Choi, R. Landig, A. M. Douglas, J. Isoya, F. Jelezko, S. Onoda, H. Sumiya, P. Cappellaro, H. S. Knowles, H. Park, and M. D. Lukin, “Quantum metrology with strongly interacting spin systems,” Phys. Rev. X 10, 031003 (2020).
- M. M. Rams, P. Sierant, O. Dutta, P. Horodecki, and J. Zakrzewski, “At the limits of criticality-based quantum metrology: Apparent super-heisenberg scaling revisited,” Phys. Rev. X 8, 021022 (2018a).
- Y. Chu, S. Zhang, B. Yu, and J. Cai, “Dynamic framework for criticality-enhanced quantum sensing,” Phys. Rev. Lett. 126, 010502 (2021).
- G. Di Fresco, B. Spagnolo, D. Valenti, and A. Carollo, “Multiparameter quantum critical metrology,” (2022), arXiv:2203.12676 [quant-ph] .
- Y. Chu, X. Li, and J. Cai, “Strong quantum metrological limit from many-body physics,” Phys. Rev. Lett. 130, 170801 (2023).
- R. Salvia, M. Mehboudi, and M. Perarnau-Llobet, “Critical quantum metrology assisted by real-time feedback control,” Phys. Rev. Lett. 130, 240803 (2023).
- R. R. Rodríguez, M. Mehboudi, M. Horodecki, and M. Perarnau-Llobet, “Strongly coupled fermionic probe for nonequilibrium thermometry,” (2023), arXiv:2310.14655 [quant-ph] .
- P. Zanardi and N. Paunković, “Ground state overlap and quantum phase transitions,” Phys. Rev. E 74, 031123 (2006).
- D. F. Abasto, A. Hamma, and P. Zanardi, “Fidelity analysis of topological quantum phase transitions,” Phys. Rev. A 78, 010301 (2008).
- Z. Sun, J. Ma, X.M. Lu, and X. Wang, “Fisher information in a quantum-critical environment,” Phys. Rev. A 82, 022306 (2010).
- P. Zanardi, M. G. A. Paris, and L. Campos Venuti, “Quantum criticality as a resource for quantum estimation,” Phys. Rev. A 78, 042105 (2008).
- B. Damski and M. M. Rams, “Exact results for fidelity susceptibility of the quantum ising model: the interplay between parity, system size, and magnetic field,” J. Phys. A Math. Theor. 47, 025303 (2013).
- G. Salvatori, A. Mandarino, and M. G. A. Paris, “Quantum metrology in lipkin-meshkov-glick critical systems,” Phys. Rev. A 90, 022111 (2014).
- J. Yang, S. Pang, A. del Campo, and A. N. Jordan, “Super-heisenberg scaling in hamiltonian parameter estimation in the long-range kitaev chain,” Phys. Rev. Res. 4, 013133 (2022).
- S. Fernández-Lorenzo, J. A. Dunningham, and D. Porras, “Heisenberg scaling with classical long-range correlations,” Phys. Rev. A 97, 023843 (2018).
- V. Montenegro, G. S. Jones, S. Bose, and A. Bayat, “Sequential measurements for quantum-enhanced magnetometry in spin chain probes,” Phys. Rev. Lett. 129, 120503 (2022).
- F. Ozaydin and A. A. Altintas, “Quantum metrology: Surpassing the shot-noise limit with dzyaloshinskii-moriya interaction,” Sci. Rep. 5, 1–6 (2015).
- L. Garbe, O. Abah, S. Felicetti, and R. Puebla, “Critical quantum metrology with fully-connected models: from heisenberg to kibble–zurek scaling,” Quantum Sci. Technol. 7, 035010 (2022a).
- S. S. Mirkhalaf, D. Benedicto Orenes, M. W. Mitchell, and E. Witkowska, “Criticality-enhanced quantum sensing in ferromagnetic bose-einstein condensates: Role of readout measurement and detection noise,” Phys. Rev. A 103, 023317 (2021).
- J. C. Budich and E. J. Bergholtz, “Non-hermitian topological sensors,” Phys. Rev. Lett. 125, 180403 (2020).
- F. Koch and J. C. Budich, “Quantum non-hermitian topological sensors,” Phys. Rev. Res. 4, 013113 (2022).
- S. Sarkar, C. Mukhopadhyay, A. Alase, and A. Bayat, “Free-fermionic topological quantum sensors,” Phys. Rev. Lett. 129, 090503 (2022).
- T. Zhang, J. Hu, and X. Qiu, “Topological waveguide quantum sensors,” (2023), arXiv:2311.01370 [quant-ph] .
- S.W. Bin, X.Y. Lü, T.S. Yin, G.L. Zhu, Q. Bin, and Y. Wu, “Mass sensing by quantum criticality,” Optics Letters 44, 630–633 (2019).
- R. Di Candia, F. Minganti, K. V. Petrovnin, G. S. Paraoanu, and S. Felicetti, “Critical parametric quantum sensing,” Npj Quantum Inf. 9 (2023), 10.1038/s41534-023-00690-z.
- L. Garbe, M. Bina, A. Keller, M. G. A. Paris, and S. Felicetti, “Critical quantum metrology with a finite-component quantum phase transition,” Phys. Rev. Lett. 124, 120504 (2020).
- T. L. Heugel, M. Biondi, O. Zilberberg, and R. Chitra, “Quantum transducer using a parametric driven-dissipative phase transition,” Phys. Rev. Lett. 123, 173601 (2019).
- S. Fernández-Lorenzo and D. Porras, “Quantum sensing close to a dissipative phase transition: Symmetry breaking and criticality as metrological resources,” Phys. Rev. A 96, 013817 (2017).
- W. Wu and C. Shi, “Criticality-enhanced quantum sensor at finite temperature,” Phys. Rev. A 104, 022612 (2021).
- Z.J. Ying, S. Felicetti, G. Liu, and D. Braak, “Critical quantum metrology in the non-linear quantum rabi model,” Entropy 24 (2022), 10.3390/e24081015.
- S.B Tang, H. Qin, D. Y. Wang, K. Cui, S. L. Su, L. L. Yan, and G. Chen, “Enhancement of quantum sensing in a cavity optomechanical system around quantum critical point,” (2023), arXiv:2303.16486 [quant-ph] .
- X. Zhu, J. J. Lü, W. Ning, F. Wu, L. T. Shen, z. B. Yang, and S. B. Zheng, “Criticality-enhanced quantum sensing in the anisotropic quantum rabi model,” SCI CHINA PHYS MECH 66 (2023), 10.1007/s11433-022-2073-9.
- L. Garbe, O. Abah, S. Felicetti, and R. Puebla, “Exponential time-scaling of estimation precision by reaching a quantum critical point,” Phys. Rev. Res. 4, 043061 (2022b).
- M. Tsang, “Quantum transition-edge detectors,” Phys. Rev. A 88, 021801 (2013).
- K. Macieszczak, M. Guţă, I. Lesanovsky, and J. P. Garrahan, “Dynamical phase transitions as a resource for quantum enhanced metrology,” Phys. Rev. A 93, 022103 (2016).
- A. Carollo, B. Spagnolo, and D. Valenti, “Uhlmann curvature in dissipative phase transitions,” Sci. Rep. 8, 9852 (2018).
- J. E. Lang, R. B. Liu, and T. S. Monteiro, “Dynamical-decoupling-based quantum sensing: Floquet spectroscopy,” Phys. Rev. X 5, 041016 (2015).
- U. Mishra and A. Bayat, “Driving enhanced quantum sensing in partially accessible many-body systems,” Phys. Rev. Lett. 127, 080504 (2021).
- U. Mishra and A. Bayat, “Integrable quantum many-body sensors for AC field sensing,” Sci. Rep. 12 (2022), 10.1038/s41598-022-17381-y.
- Theodoros Ilias, Dayou Yang, Susana F. Huelga, and Martin B. Plenio, “Criticality-enhanced quantum sensing via continuous measurement,” PRX Quantum 3, 010354 (2022).
- J. Boeyens, B. Annby-Andersson, P. Bakhshinezhad, G. Haack, M. Perarnau-Llobet, S Nimmrichter, P. P. Potts, and M. Mehboudi, “Probe thermometry with continuous measurements,” (2023), arXiv:2307.13407 [quant-ph] .
- X. He, R. Yousefjani, and A. Bayat, “Stark localization as a resource for weak-field sensing with super-heisenberg precision,” Phys. Rev. Lett. 131, 010801 (2023).
- R. Yousefjani, X. He, and A. Bayat, “Long-range interacting stark many-body probes with super-heisenberg precision,” Chinese Physics B 32, 100313 (2023).
- A. Bhattacharyya, A. Ghoshal, and U. Sen, “Disorder-induced enhancement of precision in quantum metrology,” (2023), arXiv:2212.08523 [quant-ph] .
- A. Sahoo, U. Mishra, and D. Rakshit, “Localization driven quantum sensing,” (2023), arXiv:2305.02315 [quant-ph] .
- V. Montenegro, M. G. Genoni, A. Bayat, and M. G. A. Paris, “Quantum metrology with boundary time crystals,” Communications Physics 6 (2023), 10.1038/s42005-023-01423-6.
- A. Cabot, F. Carollo, and I. Lesanovsky, “Continuous sensing and parameter estimation with the boundary time-crystal,” (2023), arXiv:2307.13277 [quant-ph] .
- M. Yu, X. Li, y. Chu, B. Mera, F. N. Ünal, P. Yang, Y. Liu, N. Goldman, and J. Cai, “Experimental demonstration of topological bounds in quantum metrology,” (2022), arXiv:2206.00546 [quant-ph] .
- R. Liu, Y. Chen, M. Jiang, X. Yang, Z. Wu, Y. Li, H. Yuan, X. Peng, and J. Du, “Experimental critical quantum metrology with the heisenberg scaling,” Npj Quantum Inf. 7, 1–7 (2021).
- Y. Ilias, D. Yang, S. F. Huelga, and B. B. Plenio, “Criticality-enhanced electromagnetic field sensor with single trapped ions,” (2023), arXiv:2304.02050 [quant-ph] .
- D. S. Ding, Z. K. Liu, B. S. Shi, G. C. Guo, K. Mølmer, and C. S. Adams, “Enhanced metrology at the critical point of a many-body rydberg atomic system,” Nature Physics 18, 1447–1452 (2022).
- L. A. Correa, M. Mehboudi, G. Adesso, and A. Sanpera, “Individual quantum probes for optimal thermometry,” Phys. Rev. Lett. 114, 220405 (2015).
- M. G. A. Paris, “Achieving the landau bound to precision of quantum thermometry in systems with vanishing gap,” J. Phys. A: Math. Theor. 49, 03LT02 (2015).
- T. M. Stace, “Quantum limits of thermometry,” Phys. Rev. A 82, 011611 (2010).
- M. T. Mitchison, T. Fogarty, G. Guarnieri, S. Campbell, T. Busch, and J. Goold, “In situ thermometry of a cold fermi gas via dephasing impurities,” Phys. Rev. Lett. 125, 080402 (2020).
- S. Campbell, M. G. Genoni, and Deffner S., “Precision thermometry and the quantum speed limit,” Quantum Sci. Technol 3, 025002 (2018).
- S. Brattegard and M. T. Mitchison, “Thermometry by correlated dephasing of impurities in a 1d fermi gas,” (2023), arXiv:2307.10132v2 [cond-mat.quant-gas] .
- M. Brenes and D. Segal, “Multispin probes for thermometry in the strong-coupling regime,” Phys. Rev. A 108, 032220 (2023).
- M. Yu, H. C. Nguyen, and S. Nimmrichter, “Criticality-enhanced precision in phase thermometry,” (2023), arXiv:2311.14578 [quant-ph] .
- M. G. A. Paris, “Quantum estimation for quantum technology,” Int. J. Quantum Inf. 07, 125–137 (2009).
- C. W. Helstrom, “Quantum detection and estimation theory,” J Stat Phy 1, 231–252 (1969).
- A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (Edizioni della Normale Pisa, 1982) p. 324.
- Subir Sachdev, “Quantum phase transitions,” Physics world 12, 33 (1999).
- C. Jayaprakash, H. R. Krishna-murthy, and J. W. Wilkins, “Two-impurity kondo problem,” Phys. Rev. Lett. 47, 737–740 (1981).
- B. A. Jones, C. M. Varma, and J. W. Wilkins, “Low-temperature properties of the two-impurity kondo hamiltonian,” Phys. Rev. Lett. 61, 125–128 (1988).
- I. Affleck and A. W. W. Ludwig, “Exact critical theory of the two-impurity kondo model,” Phys. Rev. Lett. 68, 1046–1049 (1992).
- I. Affleck, A. W. W. Ludwig, and B. A. Jones, “Conformal-field-theory approach to the two-impurity kondo problem: Comparison with numerical renormalization-group results,” Phys. Rev. B 52, 9528–9546 (1995).
- A. K. Mitchell, E. Sela, and D. E. Logan, “Two-channel kondo physics in two-impurity kondo models,” Phys. Rev. Lett. 108, 086405 (2012).
- E. Sela, A. K. Mitchell, and L. Fritz, “Exact crossover green function in the two-channel and two-impurity kondo models,” Phys. Rev. Lett. 106, 147202 (2011).
- A. K. Mitchell and E. Sela, “Universal low-temperature crossover in two-channel kondo models,” Phys. Rev. B 85, 235127 (2012).
- A. Hewson, The Kondo problem to heavy fermions (Cambridge Studies in Magnetism, CUP, 1993).
- W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, “Electron transport through double quantum dots,” Rev. Mod. Phys. 75, 1–22 (2002).
- W. Izumida and O. Sakai, “Two-impurity kondo effect in double-quantum-dot systems: Effect of interdot kinetic exchange coupling,” Phys. Rev. B 62, 10260–10267 (2000).
- G. Zaránd, C. H. Chung, P. Simon, and M. Vojta, “Quantum criticality in a double-quantum-dot system,” Phys. Rev. Lett. 97, 166802 (2006).
- H. Jeong, A. M. Chang, and M. R. Melloch, “The kondo effect in an artificial quantum dot molecule,” Science 293, 2221–2223 (2001).
- W. Pouse, L. Peeters, C. L. Hsueh, U. Gennser, A. Cavanna, M. A. Kastner, A. K. Mitchell, and D. Goldhaber-Gordon, “Quantum simulation of an exotic quantum critical point in a two-site charge kondo circuit,” Nat. Phys. 19, 492–499 (2023).
- D. B. Karki, E. Boulat, W. Pouse, D. Goldhaber-Gordon, A. K. Mitchell, and C. Mora, “𝕫3subscript𝕫3{\mathbb{z}}_{3}blackboard_z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT parafermion in the double charge kondo model,” Phys. Rev. Lett. 130, 146201 (2023).
- A. Bayat, S. Bose, P. Sodano, and H. Johannesson, “Entanglement probe of two-impurity kondo physics in a spin chain,” Phys. Rev. Lett. 109, 066403 (2012).
- A. Bayat, H. Johannesson, S. Bose, and P. Sodano, “An order parameter for impurity systems at quantum criticality,” Nat. Commun. 5, 3784 (2014).
- K. Gietka, F. Metz, T. Keller, and J. Li, “Adiabatic critical quantum metrology cannot reach the Heisenberg limit even when shortcuts to adiabaticity are applied,” Quantum 5, 489 (2021).
- M. M. Rams, P. Sierant, O. Dutta, P/ Horodecki, and J. Zakrzewski, “At the limits of criticality-based quantum metrology: Apparent super-heisenberg scaling revisited,” Phys. Rev. X 8, 021022 (2018b).
- R. M Potok, I. G. Rau, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, “Observation of the two-channel kondo effect,” Nature 446, 167–171 (2007).
- Z. Iftikhar, A. Anthore, A. K. Mitchell, F. D. Parmentier, U. Gennser, A. Ouerghi, A. Cavanna, C. Mora, P. Simon, and F. Pierre, “Tunable quantum criticality and super-ballistic transport in a “charge” kondo circuit,” Science 360, 1315–1320 (2018).
- G. Mihailescu, S. Campbell, and A. K. Mitchell, “Thermometry of strongly correlated fermionic quantum systems using impurity probes,” Phys. Rev. A 107, 042614 (2023).
- K. G. Wilson, “The renormalization group: Critical phenomena and the kondo problem,” Rev. Mod. Phys. 47, 773–840 (1975).
- R. Bulla, T. A. Costi, and T. Pruschke, “Numerical renormalization group method for quantum impurity systems,” Rev. Mod. Phys. 80, 395–450 (2008).
- G. Tóth and I. Apellaniz, “Quantum metrology from a quantum information science perspective,” J. Phys. A Math. Theor. 47, 424006 (2014).
- J. Liu, H. Yuan, X.M. Lu, and X. Wang, “Quantum fisher information matrix and multiparameter estimation,” J. Phys. A Math. Theor. 53, 023001 (2019).
- H. Zhu, “Information complementarity: A new paradigm for decoding quantum incompatibility,” Sci. Rep. 5, 14317 (2015).
- T. Heinosaari, T. Miyadera, and M. Ziman, “An invitation to quantum incompatibility,” J. Phys. A Math. Theor. 49, 123001 (2016).
- A. Bayat, P. Sodano, and S. Bose, “Negativity as the entanglement measure to probe the kondo regime in the spin-chain kondo model,” Phys. Rev. B 81, 064429 (2010).
- A. Weichselbaum and J. von Delft, “Sum-rule conserving spectral functions from the numerical renormalization group,” Phys. Rev. Lett. 99, 076402 (2007).
- A. K. Mitchell, M. R. Galpin, S. Wilson-Fletcher, D. E. Logan, and R. Bulla, “Generalized wilson chain for solving multichannel quantum impurity problems,” Phys. Rev. B 89, 121105 (2014).
- K. M. Stadler, A. K. Mitchell, J. von Delft, and A. Weichselbaum, “Interleaved numerical renormalization group as an efficient multiband impurity solver,” Phys. Rev. B 93, 235101 (2016).
- C. Han, Z. Iftikhar, Y. Kleeorin, A. Anthore, F. Pierre, Y. Meir, A. K. Mitchell, and E. Sela, “Fractional entropy of multichannel kondo systems from conductance-charge relations,” Phys. Rev. Lett. 128, 146803 (2022).
- T. Child, O. Sheekey, S. Lüscher, S. Fallahi, G. C. Gardner, M. Manfra, A. K. Mitchell, E. Sela, Y. Kleeorin, Y. Meir, and J. Folk, “Entropy measurement of a strongly coupled quantum dot,” Phys. Rev. Lett. 129, 227702 (2022).
- J. Gan, “Mapping the critical point of the two-impurity kondo model to a two-channel problem,” Phys. Rev. Lett. 74, 5287–5287 (1995).