Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Observation of quantum nonlocality in Greenberger-Horne-Zeilinger entanglement on a silicon chip (2311.16745v2)

Published 28 Nov 2023 in quant-ph

Abstract: Nonlocality is the defining feature of quantum entanglement. Entangled states with multiple particles are of crucial importance in fundamental tests of quantum physics as well as in many quantum information tasks. One of the archetypal multipartite quantum states, Greenberger-Horne-Zeilinger (GHZ) state, allows one to observe the striking conflict of quantum physics to local realism in the so-called all-versus-nothing way. This is profoundly different from Bell's theorem for two particles, which relies on statistical predictions. Here, we demonstrate an integrated photonic chip capable of generating and manipulating the four-photon GHZ state. We perform a complete characterization of the four-photon GHZ state using quantum state tomography and obtain a state fidelity of 0.729(6). We further use the all-versus-nothing test and the Mermin inequalities to witness the quantum nonlocality of GHZ entanglement. Our work paves the way to perform fundamental tests of quantum physics with complex integrated quantum devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (69)
  1. J. S. Bell, “On the Einstein Podolsky Rosen paradox,” \JournalTitlePhysics Physique Fizika 1, 195–200 (1964).
  2. N. Brunner, D. Cavalcanti, S. Pironio, et al., “Bell nonlocality,” \JournalTitleRev. Mod. Phys. 86, 419–478 (2014).
  3. J. F. Clauser and M. A. Horne, “Experimental consequences of objective local theories,” \JournalTitlePhys. Rev. D 10, 526–535 (1974).
  4. A. Aspect, J. Dalibard, and G. Roger, “Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers,” \JournalTitlePhys. Rev. Lett. 49, 1804–1807 (1982).
  5. G. Weihs, T. Jennewein, C. Simon, et al., “Violation of Bell’s Inequality under Strict Einstein Locality Conditions,” \JournalTitlePhys. Rev. Lett. 81, 5039–5043 (1998).
  6. M. A. Rowe, D. Kielpinski, V. Meyer, et al., “Experimental violation of a Bell’s inequality with efficient detection,” \JournalTitleNature 409, 791–794 (2001).
  7. D. N. Matsukevich, P. Maunz, D. L. Moehring, et al., “Bell Inequality Violation with Two Remote Atomic Qubits,” \JournalTitlePhys. Rev. Lett. 100, 150404 (2008).
  8. T. Scheidl, R. Ursin, J. Kofler, et al., “Violation of local realism with freedom of choice,” \JournalTitleProc. Natl. Acad. Sci. 107, 19708–19713 (2010).
  9. M. Giustina, A. Mech, S. Ramelow, et al., “Bell violation using entangled photons without the fair-sampling assumption,” \JournalTitleNature 497, 227–230 (2013).
  10. B. G. Christensen, K. T. McCusker, J. B. Altepeter, et al., “Detection-Loophole-Free Test of Quantum Nonlocality, and Applications,” \JournalTitlePhys. Rev. Lett. 111, 130406 (2013).
  11. B. Hensen, H. Bernien, A. E. Dréau, et al., “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” \JournalTitleNature 526, 682–686 (2015).
  12. M. Giustina, M. A. M. Versteegh, S. Wengerowsky, et al., “Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons,” \JournalTitlePhys. Rev. Lett. 115, 250401 (2015).
  13. L. K. Shalm, E. Meyer-Scott, B. G. Christensen, et al., “Strong Loophole-Free Test of Local Realism,” \JournalTitlePhys. Rev. Lett. 115, 250402 (2015).
  14. W. Rosenfeld, D. Burchardt, R. Garthoff, et al., “Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes,” \JournalTitlePhys. Rev. Lett. 119, 010402 (2017).
  15. M.-H. Li, C. Wu, Y. Zhang, et al., “Test of Local Realism into the Past without Detection and Locality Loopholes,” \JournalTitlePhys. Rev. Lett. 121, 080404 (2018).
  16. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, et al., “Multiphoton entanglement and interferometry,” \JournalTitleRev. Mod. Phys. 84, 777–838 (2012).
  17. M. Erhard, M. Krenn, and A. Zeilinger, “Advances in high-dimensional quantum entanglement,” \JournalTitleNat. Rev. Phys. 2, 365–381 (2020).
  18. D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell’s theorem,” in Bell’s theorem, quantum theory and conceptions of the universe, (Springer, 1989), pp. 69–72.
  19. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” \JournalTitleAm J Phys 58, 1131–1143 (1990).
  20. D. Bouwmeester, J.-W. Pan, M. Daniell, et al., “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” \JournalTitlePhys. Rev. Lett. 82, 1345–1349 (1999).
  21. J.-W. Pan, D. Bouwmeester, M. Daniell, et al., “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” \JournalTitleNature 403, 515–519 (2000).
  22. J.-W. Pan, M. Daniell, S. Gasparoni, et al., “Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation,” \JournalTitlePhys. Rev. Lett. 86, 4435–4438 (2001).
  23. Z. Zhao, T. Yang, Y.-A. Chen, et al., “Experimental Violation of Local Realism by Four-Photon Greenberger-Horne-Zeilinger Entanglement,” \JournalTitlePhys. Rev. Lett. 91, 180401 (2003).
  24. C.-Y. Lu, X.-Q. Zhou, O. Gühne, et al., “Experimental entanglement of six photons in graph states,” \JournalTitleNat. Phys 3, 91–95 (2007).
  25. C. Erven, E. Meyer-Scott, K. Fisher, et al., “Experimental three-photon quantum nonlocality under strict locality conditions,” \JournalTitleNat. Photonics 8, 292–296 (2014).
  26. C. Zhang, Y.-F. Huang, Z. Wang, et al., “Experimental Greenberger-Horne-Zeilinger-Type Six-Photon Quantum Nonlocality,” \JournalTitlePhys. Rev. Lett. 115, 260402 (2015).
  27. Y. Tsujimoto, M. Tanaka, N. Iwasaki, et al., “High-fidelity entanglement swapping and generation of three-qubit GHZ state using asynchronous telecom photon pair sources,” \JournalTitleSci. Rep. 8, 1446 (2018).
  28. J. C. Adcock, C. Vigliar, R. Santagati, et al., “Programmable four-photon graph states on a silicon chip,” \JournalTitleNat. Commun. 10, 3528 (2019).
  29. D. Llewellyn, Y. Ding, I. I. Faruque, et al., “Chip-to-chip quantum teleportation and multi-photon entanglement in silicon,” \JournalTitleNat. Phys. 16, 148 (2020).
  30. M. Pont, G. Corrielli, A. Fyrillas, et al., “High-fidelity generation of four-photon ghz states on-chip,” \JournalTitlearXiv preprint arXiv:2211.15626 (2022).
  31. L. DiCarlo, M. D. Reed, L. Sun, et al., “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” \JournalTitleNature 467, 574–578 (2010).
  32. J. Kelly, R. Barends, A. G. Fowler, et al., “State preservation by repetitive error detection in a superconducting quantum circuit,” \JournalTitleNature 519, 66 (2015).
  33. C. Song, K. Xu, W. Liu, et al., “10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit,” \JournalTitlePhys. Rev. Lett. 119, 180511 (2017).
  34. S. Cao, B. Wu, F. Chen, et al., “Generation of genuine entanglement up to 51 superconducting qubits,” \JournalTitleNature 619, 738 (2023).
  35. T. Monz, P. Schindler, J. T. Barreiro, et al., “14-Qubit Entanglement: Creation and Coherence,” \JournalTitlePhys. Rev. Lett. 106, 130506 (2011).
  36. B. P. Lanyon, M. Zwerger, P. Jurcevic, et al., “Experimental Violation of Multipartite Bell Inequalities with Trapped Ions,” \JournalTitlePhys. Rev. Lett. 112, 100403 (2014).
  37. Y. Zhao, R. Zhang, W. Chen, et al., “Creation of Greenberger-Horne-Zeilinger states with thousands of atoms by entanglement amplification,” \JournalTitleNPJ Quantum Inf. 7, 24 (2021).
  38. M. Pompili, S. L. N. Hermans, S. Baier, et al., “Realization of a multinode quantum network of remote solid-state qubits,” \JournalTitleScience 372, 259–264 (2021).
  39. X.-L. Wang, L.-K. Chen, W. Li, et al., “Experimental Ten-Photon Entanglement,” \JournalTitlePhys. Rev. Lett. 117, 210502 (2016).
  40. X.-L. Wang, Y.-H. Luo, H.-L. Huang, et al., “18-Qubit Entanglement with Six Photons’ Three Degrees of Freedom,” \JournalTitlePhys. Rev. Lett. 120, 260502 (2018).
  41. A. Omran, H. Levine, A. Keesling, et al., “Generation and manipulation of Schrödinger cat states in Rydberg atom arrays,” \JournalTitleScience 365, 570–574 (2019).
  42. M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, “Experimental Greenberger-Horne-Zeilinger entanglement beyond qubits,” \JournalTitleNat. Photonics 12, 759–764 (2018).
  43. J. Bao, Z. Fu, T. Pramanik, et al., “Very-large-scale integrated quantum graph photonics,” \JournalTitleNat. Photonics pp. 1–9 (2023).
  44. C. Vigliar, S. Paesani, Y. Ding, et al., “Error-protected qubits in a silicon photonic chip,” \JournalTitleNat. Phys 17, 1137–1143 (2021).
  45. L. Chen, L. Lu, L. Xia, et al., “On-Chip Generation and Collectively Coherent Control of the Superposition of the Whole Family of Dicke States,” \JournalTitlePhys. Rev. Lett. 130, 223601 (2023).
  46. Y. Zheng, C. Zhai, D. Liu, et al., “Multichip multidimensional quantum networks with entanglement retrievability,” \JournalTitleScience 381, 221–226 (2023).
  47. C. Tison, J. Steidle, M. Fanto, et al., “Path to increasing the coincidence efficiency of integrated resonant photon sources,” \JournalTitleOpt. Express 25, 33088–33096 (2017).
  48. Z. Vernon, M. Menotti, C. Tison, et al., “Truly unentangled photon pairs without spectral filtering,” \JournalTitleOpt. Lett. 42, 3638–3641 (2017).
  49. L. Lu, L. Xia, Z. Chen, et al., “Three-dimensional entanglement on a silicon chip,” \JournalTitlenpj Quantum Inf. 6, 30 (2020).
  50. N. D. Mermin, “Extreme quantum entanglement in a superposition of macroscopically distinct states,” \JournalTitlePhys. Rev. Lett. 65, 1838–1840 (1990).
  51. M. Ardehali, “Bell inequalities with a magnitude of violation that grows exponentially with the number of particles,” \JournalTitlePhys. Rev. A 46, 5375–5378 (1992).
  52. J. W. Silverstone, R. Santagati, D. Bonneau, et al., “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” \JournalTitleNat, Commun. 6, 7948 (2015).
  53. Y. Zhang, M. Agnew, T. Roger, et al., “Simultaneous entanglement swapping of multiple orbital angular momentum states of light,” \JournalTitleNat. Commun. 8, 632 (2017).
  54. I. I. Faruque, G. F. Sinclair, D. Bonneau, et al., “On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics,” \JournalTitleOpt. Express 26, 20379–20395 (2018).
  55. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” \JournalTitlePhys. Rev. A 64, 052312 (2001).
  56. G. Tóth and O. Gühne, “Detecting Genuine Multipartite Entanglement with Two Local Measurements,” \JournalTitlePhys. Rev. Lett. 94, 060501 (2005).
  57. L. C. Ryff, “Bell and Greenberger, Horne, and Zeilinger theorems revisited ,” \JournalTitleAm J Phys 65, 1197–1199 (1997).
  58. J. Wang, S. Paesani, Y. Ding, et al., “Multidimensional quantum entanglement with large-scale integrated optics,” \JournalTitleScience 360, 285–291 (2018).
  59. H. Zhang, L. Wan, T. Haug, et al., “Resource-efficient high-dimensional subspace teleportation with a quantum autoencoder,” \JournalTitleSci. Adv. 8, eabn9783 (2022).
  60. S. Bose, V. Vedral, and P. L. Knight, “Multiparticle generalization of entanglement swapping,” \JournalTitlePhys. Rev. A 57, 822–829 (1998).
  61. K. Chen and H.-K. Lo, “Multi-partite quantum cryptographic protocols with noisy GHZ States,” \JournalTitleQuantum Info. Comput. 7, 689–715 (2007).
  62. G. Murta, F. Grasselli, H. Kampermann, and D. Bruß, “Quantum Conference Key Agreement: A Review,” \JournalTitleAdvanced Quantum Technologies 3, 2000025 (2020).
  63. M. Proietti, J. Ho, F. Grasselli, et al., “Experimental quantum conference key agreement,” \JournalTitleSci. Adv. 7, eabe0395 (2021).
  64. A. Pickston, J. Ho, A. Ulibarrena, et al., “Conference key agreement in a quantum network,” \JournalTitlenpj Quantum Inf. 9, 82 (2023).
  65. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” \JournalTitlePhys. Rev. A 59, 1829–1834 (1999).
  66. A. Sen(De), U. Sen, and M. Żukowski, “Unified criterion for security of secret sharing in terms of violation of Bell inequalities,” \JournalTitlePhys. Rev. A 68, 032309 (2003).
  67. Y.-A. Chen, A.-N. Zhang, Z. Zhao, et al., “Experimental Quantum Secret Sharing and Third-Man Quantum Cryptography,” \JournalTitlePhys. Rev. Lett. 95, 200502 (2005).
  68. B. A. Bell, D. Markham, D. A. Herrera-Martí, et al., “Experimental demonstration of graph-state quantum secret sharing,” \JournalTitleNat Commun. 5, 1–12 (2014).
  69. S. M. Lee, S.-W. Lee, H. Jeong, and H. S. Park, “Quantum teleportation of shared quantum secret,” \JournalTitlePhys. Rev. Lett. 124, 060501 (2020).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com