Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Reward Shaping for Improved Learning in Real-time Strategy Game Play (2311.16339v1)

Published 27 Nov 2023 in cs.LG and cs.AI

Abstract: We investigate the effect of reward shaping in improving the performance of reinforcement learning in the context of the real-time strategy, capture-the-flag game. The game is characterized by sparse rewards that are associated with infrequently occurring events such as grabbing or capturing the flag, or tagging the opposing player. We show that appropriately designed reward shaping functions applied to different game events can significantly improve the player's performance and training times of the player's learning algorithm. We have validated our reward shaping functions within a simulated environment for playing a marine capture-the-flag game between two players. Our experimental results demonstrate that reward shaping can be used as an effective means to understand the importance of different sub-tasks during game-play towards winning the game, to encode a secondary objective functions such as energy efficiency into a player's game-playing behavior, and, to improve learning generalizable policies that can perform well against different skill levels of the opponent.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.