Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-3D-Models Registration-Based Augmented Reality (AR) Instructions for Assembly (2311.16337v2)

Published 27 Nov 2023 in cs.HC and cs.CV

Abstract: This paper introduces a novel, markerless, step-by-step, in-situ 3D Augmented Reality (AR) instruction method and its application - BRICKxAR (Multi 3D Models/M3D) - for small parts assembly. BRICKxAR (M3D) realistically visualizes rendered 3D assembly parts at the assembly location of the physical assembly model (Figure 1). The user controls the assembly process through a user interface. BRICKxAR (M3D) utilizes deep learning-trained 3D model-based registration. Object recognition and tracking become challenging as the assembly model updates at each step. Additionally, not every part in a 3D assembly may be visible to the camera during the assembly. BRICKxAR (M3D) combines multiple assembly phases with a step count to address these challenges. Thus, using fewer phases simplifies the complex assembly process while step count facilitates accurate object recognition and precise visualization of each step. A testing and heuristic evaluation of the BRICKxAR (M3D) prototype and qualitative analysis were conducted with users and experts in visualization and human-computer interaction. Providing robust 3D AR instructions and allowing the handling of the assembly model, BRICKxAR (M3D) has the potential to be used at different scales ranging from manufacturing assembly to construction.

Summary

We haven't generated a summary for this paper yet.