2000 character limit reached
Using Multiple Outcomes to Improve the Synthetic Control Method (2311.16260v3)
Published 27 Nov 2023 in econ.EM and stat.ME
Abstract: When there are multiple outcome series of interest, Synthetic Control analyses typically proceed by estimating separate weights for each outcome. In this paper, we instead propose estimating a common set of weights across outcomes, by balancing either a vector of all outcomes or an index or average of them. Under a low-rank factor model, we show that these approaches lead to lower bias bounds than separate weights, and that averaging leads to further gains when the number of outcomes grows. We illustrate this via a re-analysis of the impact of the Flint water crisis on educational outcomes.