Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Demonstration of Programmable Brain-Inspired Optoelectronic Neuron in Photonic Spiking Neural Network with Neural Heterogeneity (2311.15474v1)

Published 27 Nov 2023 in eess.SY and cs.SY

Abstract: Photonic Spiking Neural Networks (PSNN) composed of the co-integrated CMOS and photonic elements can offer low loss, low power, highly-parallel, and high-throughput computing for brain-inspired neuromorphic systems. In addition, heterogeneity of neuron dynamics can also bring greater diversity and expressivity to brain-inspired networks, potentially allowing for the implementation of complex functions with fewer neurons. In this paper, we design, fabricate, and experimentally demonstrate an optoelectronic spiking neuron that can simultaneously achieve high programmability for heterogeneous biological neural networks and maintain high-speed computing. We demonstrate that our neuron can be programmed to tune four essential parameters of neuron dynamics under 1GSpike/s input spiking pattern signals. A single neuron circuit can be tuned to output three spiking patterns, including chattering behaviors. The PSNN consisting of the optoelectronic spiking neuron and a Mach-Zehnder interferometer (MZI) mesh synaptic network achieves 89.3% accuracy on the Iris dataset. Our neuron power consumption is 1.18 pJ/spike output, mainly limited by the power efficiency of the vertical-cavity-lasers, optical coupling efficiency, and the 45 nm CMOS platform used in this experiment, and is predicted to achieve 36.84 fJ/spike output with a 7 nm CMOS platform (e.g. ASAP7) integrated with silicon photonics containing on-chip micron-scale lasers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. N. Perez-Nieves, V. C. Leung, P. L. Dragotti, and D. F. Goodman, “Neural heterogeneity promotes robust learning,” Nature Communications 2021 12:1, vol. 12, pp. 1–9, 10 2021. [Online]. Available: https://www.nature.com/articles/s41467-021-26022-3
  2. J. Gjorgjieva, G. Drion, and E. Marder, “Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance,” Current Opinion in Neurobiology, vol. 37, pp. 44–52, 2016, neurobiology of cognitive behavior. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0959438815001865
  3. H. Zeng and J. R. Sanes, “Neuronal cell-type classification: challenges, opportunities and the path forward,” Nature Reviews Neuroscience 2017 18:9, vol. 18, pp. 530–546, 8 2017. [Online]. Available: https://www.nature.com/articles/nrn.2017.85
  4. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, pp. 359–366, 1 1989.
  5. Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The expressive power of neural networks: A view from the width,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  6. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” The Journal of Physiology, vol. 160, p. 106, 1 1962. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/
  7. M. Carandini, J. B. Demb, V. Mante, D. J. Tolhurst, Y. Dan, B. A. Olshausen, J. L. Gallant, and N. C. Rust, “Do we know what the early visual system does?” The Journal of Neuroscience, vol. 25, p. 10577, 11 2005. [Online]. Available: /pmc/articles/PMC6725861//pmc/articles/PMC6725861/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725861/
  8. E. M. Izhikevich, “Which model to use for cortical spiking neurons?” IEEE Transactions on Neural Networks, vol. 15, pp. 1063–1070, 9 2004.
  9. M. Rigotti, D. Ben Dayan Rubin, X.-J. Wang, and S. Fusi, “Internal Representation of Task Rules by Recurrent Dynamics: The Importance of the Diversity of Neural Responses,” Frontiers in Computational Neuroscience, vol. 4, 2010. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fncom.2010.00024
  10. Y.-J. Lee, M. B. On, X. Xiao, R. Proietti, and S. J. B. Yoo, “Photonic spiking neural networks with event-driven femtojoule optoelectronic neurons based on Izhikevich-inspired model,” Opt. Express, vol. 30, no. 11, pp. 19 360–19 389, may 2022. [Online]. Available: http://opg.optica.org/oe/abstract.cfm?URI=oe-30-11-19360
  11. L. E. Srouji, Y.-J. Lee, M. B. On, L. Zhang, and S. J. B. Yoo, “Scalable Nanophotonic-Electronic Spiking Neural Networks,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 29, no. 2: Optical Computing, pp. 1–13, 2023.
  12. X. Guo, S. Xiang, Y. Zhang, Z. Song, Y. Han, B. Gu, D. Zheng, X. Chen, Y. Shi, and Y. Hao, “Hardware implementation of multi-layer photonic spiking neural network with three cascaded photonic spiking neurons,” Journal of Lightwave Technology, pp. 1–9, 2023.
  13. N.-P. Diamantopoulos, S. Yamaoka, T. Fujii, H. Nishi, T. Segawa, and S. Matsuo, “Ultrafast Spiking Membrane III-V Laser Neuron on Si,” in European Conference on Optical Communication (ECOC) 2022.   Optica Publishing Group, 2022, p. Mo3G.2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=ECEOC-2022-Mo3G.2
  14. D. O. Newns, M. Hejda, J. Robertson, and A. Hurtado, “VCSEL Based Neuromorphic Computing,” in Optical Fiber Communication Conference (OFC) 2023.   Optica Publishing Group, 2023, p. W3G.6. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=OFC-2023-W3G.6
  15. W. Zhang, M. Hejda, Q. R. Ali Al-Taai, B. Romeira, J. Figueiredo, E. Wasige, and A. Hurtado, “Tunable optoelectronic neuromorphic synaptic link based on nanoscale resonant tunnelling diode-photodetector spiking neurons,” in 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2023, pp. 1–1.
  16. J. Wen, H. Zhang, Z. Wu, Q. Wang, H. Yu, W. Sun, B. Liang, C. He, K. Xiong, Y. Pan, Y. Zhang, and Z. Liu, “All-optical spiking neural network and optical spike-time-dependent plasticity based on the self-pulsing effect within a micro-ring resonator,” Appl. Opt., vol. 62, no. 20, pp. 5459–5466, 2023. [Online]. Available: https://opg.optica.org/ao/abstract.cfm?URI=ao-62-20-5459
  17. D. Garcia, J. Granizo, and L. Hernandez, “Validation of a CMOS SNN network based on a time-domain threshold neuron circuit achieving 114.90 pJ/inference on MNIST,” in 2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2023, pp. 1–5.
  18. H. Mao, Y. Zhu, S. Ke, Y. Zhu, K. Shi, X. Wang, C. Wan, and Q. Wan, “A tunable leaky integrate-and-fire neuron based on one neuromorphic transistor and one memristor,” Applied Physics Letters, vol. 123, no. 1, p. 13501, 2023. [Online]. Available: https://doi.org/10.1063/5.0151312
  19. M. S. Bouanane, D. Cherifi, E. Chicca, and L. Khacef, “Impact of spiking neurons leakages and network recurrences on event-based spatio-temporal pattern recognition,” 2022.
  20. C. M. Gray and D. A. McCormick, “Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex,” Science, vol. 274, no. 5284, pp. 109–113, oct 1996. [Online]. Available: https://doi.org/10.1126/science.274.5284.109
  21. R. A. FISHER, “The use of multiple measurements in taxonomic problems,” Annals of Eugenics, vol. 7, no. 2, pp. 179–188, 1936. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
  22. L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm finFET predictive process design kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S002626921630026X
  23. R. Kuszelewicz, S. Barbay, and A. M. Yacomotti, “Excitability in a semiconductor laser with saturable absorber,” Optics Letters, Vol. 36, Issue 23, pp. 4476-4478, vol. 36, pp. 4476–4478, 12 2011. [Online]. Available: https://opg.optica.org/viewmedia.cfm?uri=ol-36-23-4476&seq=0&html=truehttps://opg.optica.org/abstract.cfm?uri=ol-36-23-4476https://opg.optica.org/ol/abstract.cfm?uri=ol-36-23-4476
  24. A. Hurtado, K. Schires, I. D. Henning, and M. J. Adams, “Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems,” Applied Physics Letters, vol. 100, p. 103703, 3 2012. [Online]. Available: /aip/apl/article/100/10/103703/125653/Investigation-of-vertical-cavity-surface-emitting
  25. M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 19, 2013.
  26. B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Scientific Reports 2016 6:1, vol. 6, pp. 1–12, 1 2016. [Online]. Available: https://www.nature.com/articles/srep19126
  27. I. Chakraborty, G. Saha, A. Sengupta, and K. Roy, “Toward fast neural computing using all-photonic phase change spiking neurons,” Scientific Reports 2018 8:1, vol. 8, pp. 1–9, 8 2018. [Online]. Available: https://www.nature.com/articles/s41598-018-31365-x
  28. S. Xiang, Y. Zhang, J. Gong, X. Guo, L. Lin, and Y. Hao, “Stdp-based unsupervised spike pattern learning in a photonic spiking neural network with vcsels and vcsoas,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, 11 2019.
  29. H. T. Peng, G. Angelatos, T. F. de Lima, M. A. Nahmias, A. N. Tait, S. Abbaslou, B. J. Shastri, and P. R. Prucnal, “Temporal information processing with an integrated laser neuron,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, 1 2020.
  30. C. Huang, P. R. Prucnal, H.-T. Peng, A. Jha, and B. Shastri, “Photonic spiking neural networks and graphene-on-silicon spiking neurons,” Journal of Lightwave Technology, Vol. 40, Issue 9, pp. 2901-2914, vol. 40, pp. 2901–2914, 5 2022. [Online]. Available: https://opg.optica.org/abstract.cfm?uri=jlt-40-9-2901https://opg.optica.org/jlt/abstract.cfm?uri=jlt-40-9-2901
  31. M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.
Citations (4)

Summary

We haven't generated a summary for this paper yet.