Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Covariance-Based Activity Detection in Cooperative Multi-Cell Massive MIMO: Scaling Law and Efficient Algorithms (2311.15299v3)

Published 26 Nov 2023 in cs.IT, eess.SP, math.IT, and math.OC

Abstract: This paper focuses on the covariance-based activity detection problem in a multi-cell massive multiple-input multiple-output (MIMO) system. In this system, active devices transmit their signature sequences to multiple base stations (BSs), and the BSs cooperatively detect the active devices based on the received signals. While the scaling law for the covariance-based activity detection in the single-cell scenario has been extensively analyzed in the literature, this paper aims to analyze the scaling law for the covariance-based activity detection in the multi-cell massive MIMO system. Specifically, this paper demonstrates a quadratic scaling law in the multi-cell system, under the assumption that the path-loss exponent of the fading channel $\gamma > 2.$ This finding shows that, in the multi-cell massive MIMO system, the maximum number of active devices that can be correctly detected in each cell increases quadratically with the length of the signature sequence and decreases logarithmically with the number of cells (as the number of antennas tends to infinity). Moreover, in addition to analyzing the scaling law for the signature sequences randomly and uniformly distributed on a sphere, the paper also establishes the scaling law for signature sequences based on a finite alphabet, which are easier to generate and store. Finally, this paper proposes two efficient accelerated coordinate descent (CD) algorithms with a convergence guarantee for solving the device activity detection problem. The first algorithm reduces the complexity of CD by using an inexact coordinate update strategy. The second algorithm avoids unnecessary computations of CD by using an active set selection strategy. Simulation results show that the proposed algorithms exhibit excellent performance in terms of computational efficiency and detection error probability.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. Z. Wang, Y.-F. Liu, Z. Chen, and W. Yu, “Accelerating coordinate descent via active set selection for device activity detection for multi-cell massive random access,” in Proc. IEEE Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Lucca, Italy, Sep. 2021, pp. 366–370.
  2. Z. Wang, Y.-F. Liu, Z. Wang, and W. Yu, “Scaling law analysis for covariance based activity detection in cooperative multi-cell massive MIMO,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Rhodes, Greece, Jun. 2023, pp. 1–5.
  3. C. Bockelmann, N. Pratas, H. Nikopour, K. Au, T. Svensson, Č. Stefanović, P. Popovski, and A. Dekorsy, “Massive machine-type communications in 5G: Physical and MAC-layer solutions,” IEEE Commun. Mag., vol. 54, no. 9, pp. 59–65, Sep. 2016.
  4. X. Chen, D. W. K. Ng, W. Yu, E. G. Larsson, N. Al-Dhahir, and R. Schober, “Massive access for 5G and beyond,” IEEE J. Sel. Areas Commun., vol. 39, no. 3, pp. 615–637, Mar. 2021.
  5. L. Liu, E. G. Larsson, W. Yu, P. Popovski, Č. Stefanović, and E. de Carvalho, “Sparse signal processing for grant-free massive connectivity: A future paradigm for random access protocols in the internet of things,” IEEE Signal Process. Mag., vol. 35, no. 5, pp. 88–99, Sep. 2018.
  6. L. Liu and W. Yu, “Massive connectivity with massive MIMO —Part I: Device activity detection and channel estimation,” IEEE Trans. Signal Process., vol. 66, no. 11, pp. 2933–2946, Jun. 2018.
  7. S. Haghighatshoar, P. Jung, and G. Caire, “Improved scaling law for activity detection in massive MIMO systems,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO, USA, Jun. 2018, pp. 381–385.
  8. Z. Chen, F. Sohrabi, Y.-F. Liu, and W. Yu, “Phase transition analysis for covariance-based massive random access with massive MIMO,” IEEE Trans. Inf. Theory, vol. 68, no. 3, pp. 1696–1715, Mar. 2022.
  9. Z. Chen, F. Sohrabi, and W. Yu, “Sparse activity detection in multi-cell massive MIMO exploiting channel large-scale fading,” IEEE Trans. Signal Process., vol. 69, pp. 3768–3781, Jun. 2021.
  10. U. K. Ganesan, E. Björnson, and E. G. Larsson, “Clustering-based activity detection algorithms for grant-free random access in cell-free massive MIMO,” IEEE Trans. Commun., vol. 69, no. 11, pp. 7520–7530, Nov. 2021.
  11. A. Fengler, S. Haghighatshoar, P. Jung, and G. Caire, “Non-Bayesian activity detection, large-scale fading coefficient estimation, and unsourced random access with a massive MIMO receiver,” IEEE Trans. Inf. Theory, vol. 67, no. 5, pp. 2925–2951, May 2021.
  12. K. Senel and E. G. Larsson, “Grant-free massive MTC-enabled massive MIMO: A compressive sensing approach,” IEEE Trans. Commun., vol. 66, no. 12, pp. 6164–6175, Dec. 2018.
  13. Z. Chen, F. Sohrabi, and W. Yu, “Sparse activity detection for massive connectivity,” IEEE Trans. Signal Process., vol. 66, no. 7, pp. 1890–1904, Apr. 2018.
  14. W. Zhu, M. Tao, X. Yuan, and Y. Guan, “Message passing-based joint user activity detection and channel estimation for temporally-correlated massive access,” IEEE Trans. Commun., vol. 71, no. 6, pp. 3576–3591, Jun. 2023.
  15. A. Rajoriya and R. Budhiraja, “Joint AMP-SBL algorithms for device activity detection and channel estimation in massive MIMO mMTC systems,” IEEE Trans. Commun., vol. 71, no. 4, pp. 2136–2152, Apr. 2023.
  16. H. Iimori, T. Takahashi, K. Ishibashi, G. T. F. de Abreu, and W. Yu, “Grant-free access via bilinear inference for cell-free MIMO with low-coherence pilots,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7694–7710, Nov. 2021.
  17. S. Zhang, Y. Cui, and W. Chen, “Joint device activity detection, channel estimation and signal detection for massive grant-free access via BiGAMP,” IEEE Trans. Signal Process., vol. 71, pp. 1200–1215, Apr. 2023.
  18. X. Bian, Y. Mao, and J. Zhang, “Joint activity detection, channel estimation, and data decoding for grant-free massive random access,” IEEE Internet Things J., vol. 10, no. 16, pp. 14 042–14 057, Aug. 2023.
  19. T. Li, J. Zhang, Z. Yang, Z. L. Yu, Z. Gu, and Y. Li, “Dynamic user activity and data detection for grant-free NOMA via weighted ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT minimization,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1638–1651, Mar. 2022.
  20. L. Liu and Y.-F. Liu, “An efficient algorithm for device detection and channel estimation in asynchronous IoT systems,” in Proc. IEEE ICASSP, Toronto, ON, Canada, Jun. 2021, pp. 4815–4819.
  21. L. Marata, O. L. A. López, A. Hauptmann, H. Djelouat, and H. Alves, “Joint activity detection and channel estimation for clustered massive machine type communications,” arXiv:2305.02935, 2023.
  22. J. Kang and W. Yu, “Minimum feedback for collision-free scheduling in massive random access,” IEEE Trans. Inf. Theory, vol. 67, no. 12, pp. 8094–8108, Dec. 2021.
  23. ——, “Scheduling versus contention for massive random access in massive MIMO systems,” IEEE Trans. Commun., vol. 70, no. 9, pp. 5811–5824, Sep. 2022.
  24. S. Khanna and C. R. Murthy, “On the support recovery of jointly sparse Gaussian sources via sparse Bayesian learning,” IEEE Trans. Inf. Theory, vol. 68, no. 11, pp. 7361–7378, Nov. 2022.
  25. D. Jiang and Y. Cui, “ML and MAP device activity detections for grant-free massive access in multi-cell networks,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 3893–3908, Jun. 2022.
  26. J. Dong, J. Zhang, Y. Shi, and J. H. Wang, “Faster activity and data detection in massive random access: A multiarmed bandit approach,” IEEE Internet Things J., vol. 9, no. 15, pp. 13 664–13 678, Aug. 2022.
  27. X. Xie, Y. Wu, J. Gao, and W. Zhang, “Massive unsourced random access for massive MIMO correlated channels,” in IEEE Global Commun. Conf. (GLOBECOM), Taipei, Taiwan, 2020, pp. 1–6.
  28. D. P. Wipf and B. D. Rao, “An empirical Bayesian strategy for solving the simultaneous sparse approximation problem,” IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3704–3716, Jul. 2007.
  29. P. Stoica, P. Babu, and J. Li, “SPICE: A sparse covariance-based estimation method for array processing,” IEEE Trans. Signal Process., vol. 59, no. 2, pp. 629–638, Feb. 2011.
  30. Z. Wang, Z. Chen, Y.-F. Liu, F. Sohrabi, and W. Yu, “An efficient active set algorithm for covariance based joint data and activity detection for massive random access with massive MIMO,” in Proc. IEEE ICASSP, Toronto, ON, Canada, Jun. 2021, pp. 4840–4844.
  31. X. Shao, X. Chen, D. W. K. Ng, C. Zhong, and Z. Zhang, “Cooperative activity detection: Sourced and unsourced massive random access paradigms,” IEEE Trans. Signal Process., vol. 68, pp. 6578–6593, Nov. 2020.
  32. Y. Li, Q. Lin, Y.-F. Liu, B. Ai, and Y.-C. Wu, “Asynchronous activity detection for cell-free massive MIMO: From centralized to distributed algorithms,” IEEE Trans. Wireless Commun., vol. 22, no. 4, pp. 2477–2492, Apr. 2023.
  33. Y.-F. Liu, W. Yu, Z. Wang, Z. Chen, and F. Sohrabi, “Grant-free random access via covariance-based approach,” in Next Generation Multiple Access., (Editors: Yuanwei Liu, Liang Liu, Zhiguo Ding, and Xuemin (Sherman) Shen), Wiley, 2023.
  34. J. Gao, Y. Wu, S. Shao, W. Yang, and H. V. Poor, “Energy efficiency of massive random access in MIMO quasi-static Rayleigh fading channels with finite blocklength,” IEEE Trans. Inf. Theory, vol. 69, no. 3, pp. 1618–1657, Mar. 2023.
  35. Z. Chen, F. Sohrabi, Y.-F. Liu, and W. Yu, “Covariance based joint activity and data detection for massive random access with massive MIMO,” in Proc. IEEE Int. Conf. Commun. (ICC), Shanghai, China, May 2019, pp. 1–6.
  36. Z. Wang, Y.-F. Liu, and L. Liu, “Covariance-based joint device activity and delay detection in asynchronous mMTC,” IEEE Signal Process. Lett., vol. 29, pp. 538–542, Jan. 2022.
  37. Q. Lin, Y. Li, and Y.-C. Wu, “Sparsity constrained joint activity and data detection for massive access: A difference-of-norms penalty framework,” IEEE Trans. Wireless Commun., vol. 22, no. 3, pp. 1480–1494, Mar. 2023.
  38. W. Liu, Y. Cui, F. Yang, L. Ding, J. Xu, and X. Xu, “MLE-based device activity detection for grant-free massive access under frequency offsets,” in Proc. IEEE ICC, Seoul, Korea, May 2022, pp. 1629–1634.
  39. F. Tian, X. Chen, L. Liu, and D. W. K. Ng, “Massive unsourced random access over Rician fading channels: Design, analysis, and optimization,” IEEE Internet Things J., vol. 9, no. 18, pp. 17 675–17 688, Sep. 2022.
  40. W. Liu, Y. Cui, F. Yang, L. Ding, and J. Sun, “MLE-based device activity detection under Rician fading for massive grant-free access with perfect and imperfect synchronization,” arXiv:2306.06734, 2023.
  41. W. Jiang, Y. Jia, and Y. Cui, “Statistical device activity detection for OFDM-based massive grant-free access,” IEEE Trans. Wireless Commun., vol. 22, no. 6, pp. 3805–3820, Jun. 2023.
  42. Z. Wang, Y.-F. Liu, Z. Wang, L. Liu, H. Pan, and S. Cui, “Device activity detection in mMTC with low-resolution ADC: A new protocol,” arXiv:2304.05119, 2023.
  43. C. R. Srivatsa and C. R. Murthy, “User activity detection for irregular repetition slotted ALOHA based mMTC,” IEEE Trans. Signal Process., vol. 70, pp. 3616–3631, Jun. 2022.
  44. Y. Polyanskiy, “A perspective on massive random-access,” in Proc. IEEE ISIT, Aachen, Germany, Jun. 2017, pp. 2523–2527.
  45. V. K. Amalladinne, J.-F. Chamberland, and K. R. Narayanan, “A coded compressed sensing scheme for unsourced multiple access,” IEEE Trans. Inf. Theory, vol. 66, no. 10, pp. 6509–6533, Oct. 2020.
  46. A. Fengler, P. Jung, and G. Caire, “SPARCs for unsourced random access,” IEEE Trans. Inf. Theory, vol. 67, no. 10, pp. 6894–6915, Oct. 2021.
  47. E. A. Karatsuba, “On the asymptotic representation of the Euler gamma function by Ramanujan,” J. Comput. Appl. Math., vol. 135, no. 2, pp. 225–240, 2001.
Citations (5)

Summary

We haven't generated a summary for this paper yet.