Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequencing-enabled Hierarchical Cooperative CAV On-ramp Merging Control with Enhanced Stability and Feasibility (2311.14924v2)

Published 25 Nov 2023 in eess.SY and cs.SY

Abstract: This paper develops a sequencing-enabled hierarchical connected automated vehicle (CAV) cooperative on-ramp merging control framework. The proposed framework consists of a two-layer design: the upper level control sequences the vehicles to harmonize the traffic density across mainline and on-ramp segments while enhancing lower-level control efficiency through a mixed-integer linear programming formulation. Subsequently, the lower-level control employs a longitudinal distributed model predictive control (MPC) supplemented by a virtual car-following (CF) concept to ensure asymptotic local stability, l_2 norm string stability, and safety. Proofs of asymptotic local stability and l_2 norm string stability are mathematically derived. Compared to other prevalent asymptotic local-stable MPC controllers, the proposed distributed MPC controller greatly expands the initial feasible set. Additionally, an auxiliary lateral control is developed to maintain lane-keeping and merging smoothness while accommodating ramp geometric curvature. To validate the proposed framework, multiple numerical experiments are conducted. Results indicate a notable outperformance of our upper-level controller against a distance-based sequencing method. Furthermore, the lower-level control effectively ensures smooth acceleration, safe merging with adequate spacing, adherence to proven longitudinal local and string stability, and rapid regulation of lateral deviations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. S. Ahn and M. J. Cassidy, “Freeway traffic oscillations and vehicle lane-change maneuvers,” Transportation and Traffic Theory, vol. 1, pp. 691–710, 2007.
  2. S. Ahn, J. Laval, and M. J. Cassidy, “Effects of merging and diverging on freeway traffic oscillations: theory and observation,” Transportation research record, vol. 2188, no. 1, pp. 1–8, 2010.
  3. A. Srivastava and N. Geroliminis, “Empirical observations of capacity drop in freeway merges with ramp control and integration in a first-order model,” Transportation Research Part C: Emerging Technologies, vol. 30, pp. 161–177, 2013.
  4. X.-Y. Lu and S. E. Shladover, “Review of variable speed limits and advisories: Theory, algorithms, and practice,” Transportation research record, vol. 2423, no. 1, pp. 15–23, 2014.
  5. M. Papageorgiou and A. Kotsialos, “Freeway ramp metering: An overview,” IEEE transactions on intelligent transportation systems, vol. 3, no. 4, pp. 271–281, 2002.
  6. J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and automated vehicles: State of the art and future challenges,” Annual reviews in control, vol. 45, pp. 18–40, 2018.
  7. M. Wang, W. Daamen, S. P. Hoogendoorn, and B. van Arem, “Cooperative car-following control: Distributed algorithm and impact on moving jam features,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 5, pp. 1459–1471, 2015.
  8. Y. Zhou, S. Ahn, M. Chitturi, and D. A. Noyce, “Rolling horizon stochastic optimal control strategy for acc and cacc under uncertainty,” Transportation Research Part C: Emerging Technologies, vol. 83, pp. 61–76, 2017.
  9. P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive active steering control for autonomous vehicle systems,” IEEE Transactions on control systems technology, vol. 15, no. 3, pp. 566–580, 2007.
  10. Y. Zhou, S. Ahn, M. Wang, and S. Hoogendoorn, “Stabilizing mixed vehicular platoons with connected automated vehicles: An h-infinity approach,” Transportation Research Part B: Methodological, vol. 132, pp. 152–170, 2020.
  11. V. Milanés, J. Godoy, J. Villagrá, and J. Pérez, “Automated on-ramp merging system for congested traffic situations,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 2, pp. 500–508, 2010.
  12. T. Chen, M. Wang, S. Gong, Y. Zhou, and B. Ran, “Connected and automated vehicle distributed control for on-ramp merging scenario: A virtual rotation approach,” Transportation Research Part C: Emerging Technologies, vol. 133, p. 103451, 2021.
  13. W. Cao, M. Mukai, T. Kawabe, H. Nishira, and N. Fujiki, “Cooperative vehicle path generation during merging using model predictive control with real-time optimization,” Control Engineering Practice, vol. 34, pp. 98–105, 2015.
  14. Y. Zhou, M. Wang, and S. Ahn, “Distributed model predictive control approach for cooperative car-following with guaranteed local and string stability,” Transportation research part B: methodological, vol. 128, pp. 69–86, 2019.
  15. Y. Zheng, S. E. Li, K. Li, F. Borrelli, and J. K. Hedrick, “Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies,” IEEE Transactions on Control Systems Technology, vol. 25, no. 3, pp. 899–910, 2016.
  16. K. Li, Y. Bian, S. E. Li, B. Xu, and J. Wang, “Distributed model predictive control of multi-vehicle systems with switching communication topologies,” Transportation Research Part C: Emerging Technologies, vol. 118, p. 102717, 2020.
  17. W. B. Dunbar and D. S. Caveney, “Distributed receding horizon control of vehicle platoons: Stability and string stability,” IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 620–633, 2011.
  18. J. Ding, L. Li, H. Peng, and Y. Zhang, “A rule-based cooperative merging strategy for connected and automated vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 8, pp. 3436–3446, 2019.
  19. Z. Hu, J. Huang, Z. Yang, and Z. Zhong, “Embedding robust constraint-following control in cooperative on-ramp merging,” IEEE Transactions on Vehicular Technology, vol. 70, no. 1, pp. 133–145, 2021.
  20. N. Chen, B. van Arem, T. Alkim, and M. Wang, “A hierarchical model-based optimization control approach for cooperative merging by connected automated vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 12, pp. 7712–7725, 2020.
  21. Y. Xie, H. Zhang, N. H. Gartner, and T. Arsava, “Collaborative merging strategy for freeway ramp operations in a connected and autonomous vehicles environment,” Journal of Intelligent Transportation Systems, vol. 21, no. 2, pp. 136–147, 2017.
  22. J. Rios-Torres and A. A. Malikopoulos, “Automated and cooperative vehicle merging at highway on-ramps,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 4, pp. 780–789, 2016.
  23. C. Mu, L. Du, and X. Zhao, “Event triggered rolling horizon based systematical trajectory planning for merging platoons at mainline-ramp intersection,” Transportation research part C: emerging technologies, vol. 125, p. 103006, 2021.
  24. R. Zhang, F. Rossi, and M. Pavone, “Model predictive control of autonomous mobility-on-demand systems,” in 2016 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2016, pp. 1382–1389.
  25. B. Xu, J. Shi, S. Li, H. Li, and Z. Wang, “Energy consumption and battery aging minimization using a q-learning strategy for a battery/ultracapacitor electric vehicle,” Energy, vol. 229, p. 120705, 2021.
  26. M. Wang, W. Daamen, S. P. Hoogendoorn, and B. van Arem, “Rolling horizon control framework for driver assistance systems. part i: Mathematical formulation and non-cooperative systems,” Transportation research part C: emerging technologies, vol. 40, pp. 271–289, 2014.
  27. R. Amrit, J. B. Rawlings, and D. Angeli, “Economic optimization using model predictive control with a terminal cost,” Annual Reviews in Control, vol. 35, no. 2, pp. 178–186, 2011.
  28. A. Ferramosca, J. B. Rawlings, D. Limón, and E. F. Camacho, “Economic mpc for a changing economic criterion,” in 49th IEEE Conference on Decision and Control (CDC).   IEEE, 2010, pp. 6131–6136.
  29. J. B. Rawlings, D. Angeli, and C. N. Bates, “Fundamentals of economic model predictive control,” in 2012 IEEE 51st IEEE conference on decision and control (CDC).   IEEE, 2012, pp. 3851–3861.
  30. L. Fagiano and A. R. Teel, “Generalized terminal state constraint for model predictive control,” Automatica, vol. 49, no. 9, pp. 2622–2631, 2013.
  31. G. J. Naus, R. P. Vugts, J. Ploeg, M. J. van De Molengraft, and M. Steinbuch, “String-stable cacc design and experimental validation: A frequency-domain approach,” IEEE Transactions on vehicular technology, vol. 59, no. 9, pp. 4268–4279, 2010.
  32. D. L. Kleinman and P. K. Rao, “Continuous-discrete gain transformation methods for linear feedback control,” Automatica, vol. 13, no. 4, pp. 425–428, 1977.
  33. S. M. Melzer and B. C. Kuo, “Sampling period sensitivity of the optimal sampled data linear regulator,” Automatica, vol. 7, no. 3, pp. 367–370, 1971.
  34. P. MacAulay-Owen, “Parseval’s Theorem for Hankel Transforms,” Proceedings of the London Mathematical Society, vol. s2-45, no. 1, pp. 458–474, 01 1939.
  35. D. Halperin, “Robust geometric computing in motion,” The International Journal of Robotics Research, vol. 21, no. 3, pp. 219–232, 2002.
  36. J. Colyar and J. Halkias, “U.S. highway 101 dataset,” 2007.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Sixu Li (27 papers)
  2. Yang Zhou (311 papers)
  3. Xinyue Ye (24 papers)
  4. Jiwan Jiang (4 papers)
  5. Meng Wang (1063 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.