Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disruption Prediction in Fusion Devices through Feature Extraction and Logistic Regression (2311.14856v1)

Published 24 Nov 2023 in physics.plasm-ph and cs.LG

Abstract: This document describes an approach used in the Multi-Machine Disruption Prediction Challenge for Fusion Energy by ITU, a data science competition which ran from September to November 2023, on the online platform Zindi. The competition involved data from three fusion devices - C-Mod, HL-2A, and J-TEXT - with most of the training data coming from the last two, and the test data coming from the first one. Each device has multiple diagnostics and signals, and it turns out that a critical issue in this competition was to identify which signals, and especially which features from those signals, were most relevant to achieve accurate predictions. The approach described here is based on extracting features from signals, and then applying logistic regression on top of those features. Each signal is treated as a separate predictor and, in the end, a combination of such predictors achieved the first place on the leaderboard.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. M. Leslie, “Start-ups seek to accelerate path to nuclear fusion,” Engineering, vol. 8, pp. 6–8, 2022.
  2. H. J. de Blank, “MHD instabilities in tokamaks,” Fusion Science and Technology, vol. 53, no. 2T, pp. 122–134, 2008.
  3. V. Riccardo, P. Barabaschi, and M. Sugihara, “Characterization of plasma current quench at JET,” Plasma Physics and Controlled Fusion, vol. 47, no. 1, p. 117, 2004.
  4. C. Rea and R. S. Granetz, “Exploratory machine learning studies for disruption prediction using large databases on DIII-D,” Fusion Science and Technology, vol. 74, no. 1-2, pp. 89–100, 2018.
  5. J. Kates-Harbeck, A. Svyatkovskiy, and W. Tang, “Predicting disruptive instabilities in controlled fusion plasmas through deep learning,” Nature, vol. 568, pp. 526–531, 2019.
  6. J. Vega, A. Murari, S. Dormido-Canto, G. A. Rattá, Gelfusa, and JET Contributors, “Disruption prediction with artificial intelligence techniques in tokamak plasmas,” Nature Physics, vol. 18, no. 7, pp. 741–750, 2022.
  7. E. Strait, J. Barr, M. Baruzzo, J. Berkery, R. Buttery, P. de Vries, N. Eidietis, R. Granetz, J. Hanson, C. Holcomb, D. Humphreys, J. Kim, E. Kolemen, M. Kong, M. Lanctot, M. Lehnen, E. Lerche, N. Logan, M. Maraschek, M. Okabayashi, J. Park, A. Pau, G. Pautasso, F. Poli, C. Rea, S. Sabbagh, O. Sauter, E. Schuster, U. Sheikh, C. Sozzi, F. Turco, A. Turnbull, Z. Wang, W. Wehner, and L. Zeng, “Progress in disruption prevention for ITER,” Nuclear Fusion, vol. 59, no. 11, p. 112012, 2019.
  8. C. G. Windsor, G. Pautasso, C. Tichmann, R. J. Buttery, T. C. Hender, JET EFDA Contributors, and the ASDEX Upgrade Team, “A cross-tokamak neural network disruption predictor for the JET and ASDEX Upgrade tokamaks,” Nuclear Fusion, vol. 45, no. 5, p. 337, 2005.
  9. W. Zheng, F. Xue, Z. Chen, D. Chen, B. Guo, C. Shen, X. Ai, N. Wang, M. Zhang, Y. Ding, Z. Chen, Z. Yang, B. Shen, B. Xiao, and Y. Pan, “Disruption prediction for future tokamaks using parameter-based transfer learning,” Communications Physics, vol. 6, no. 1, p. 181, 2023.
  10. R. Rossi, M. Gelfusa, T. Craciunescu, L. Spolladore, I. Wyss, E. Peluso, J. Vega, C. F. Maggi, J. Mailloux, M. Maslov, A. Murari, and JET Contributors, “A systematic investigation of radiation collapse for disruption avoidance and prevention on JET tokamak,” Matter and Radiation at Extremes, vol. 8, no. 4, p. 046903, 2023.
  11. G. Sias, B. Cannas, A. Fanni, A. Murari, and A. Pau, “A locked mode indicator for disruption prediction on JET and ASDEX Upgrade,” Fusion Engineering and Design, vol. 138, pp. 254–266, 2019.
  12. A. Mathews, J. Hughes, A. Hubbard, D. Whyte, S. Wolfe, T. Golfinopoulos, D. Brunner, R. Granetz, C. Rea, A. White, and Alcator C-Mod Team, “Confinement regime identification on Alcator C-Mod using supervised machine learning methods,” MIT Plasma Science and Fusion Center, Tech. Rep. PSFC/RR-19-6, 2019.

Summary

We haven't generated a summary for this paper yet.