AutoKG: Efficient Automated Knowledge Graph Generation for Language Models (2311.14740v1)
Abstract: Traditional methods of linking LLMs to knowledge bases via the semantic similarity search often fall short of capturing complex relational dynamics. To address these limitations, we introduce AutoKG, a lightweight and efficient approach for automated knowledge graph (KG) construction. For a given knowledge base consisting of text blocks, AutoKG first extracts keywords using a LLM and then evaluates the relationship weight between each pair of keywords using graph Laplace learning. We employ a hybrid search scheme combining vector similarity and graph-based associations to enrich LLM responses. Preliminary experiments demonstrate that AutoKG offers a more comprehensive and interconnected knowledge retrieval mechanism compared to the semantic similarity search, thereby enhancing the capabilities of LLMs in generating more insightful and relevant outputs.
- J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
- Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
- C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” The Journal of Machine Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.
- A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, et al., “Palm: Scaling language modeling with pathways,” arXiv preprint arXiv:2204.02311, 2022.
- K. Tirumala, A. Markosyan, L. Zettlemoyer, and A. Aghajanyan, “Memorization without overfitting: Analyzing the training dynamics of large language models,” Advances in Neural Information Processing Systems, vol. 35, pp. 38274–38290, 2022.
- K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Learning to prompt for vision-language models,” International Journal of Computer Vision, vol. 130, no. 9, pp. 2337–2348, 2022.
- S. Welleck, I. Kulikov, S. Roller, E. Dinan, K. Cho, and J. Weston, “Neural text generation with unlikelihood training,” arXiv preprint arXiv:1908.04319, 2019.
- Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P. Fung, “Survey of hallucination in natural language generation,” ACM Computing Surveys, vol. 55, no. 12, pp. 1–38, 2023.
- F. Petroni, T. Rocktäschel, P. Lewis, A. Bakhtin, Y. Wu, A. H. Miller, and S. Riedel, “Language models as knowledge bases?,” arXiv preprint arXiv:1909.01066, 2019.
- T. Scialom, T. Chakrabarty, and S. Muresan, “Fine-tuned language models are continual learners,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, (Abu Dhabi, United Arab Emirates), pp. 6107–6122, Association for Computational Linguistics, Dec. 2022.
- G. Mialon, R. Dessì, M. Lomeli, C. Nalmpantis, R. Pasunuru, R. Raileanu, B. Rozière, T. Schick, J. Dwivedi-Yu, A. Celikyilmaz, et al., “Augmented language models: a survey,” arXiv preprint arXiv:2302.07842, 2023.
- A. Asai, X. Yu, J. Kasai, and H. Hajishirzi, “One question answering model for many languages with cross-lingual dense passage retrieval,” Advances in Neural Information Processing Systems, vol. 34, pp. 7547–7560, 2021.
- P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, et al., “Retrieval-augmented generation for knowledge-intensive nlp tasks,” Advances in Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.
- Y. Luan, J. Eisenstein, K. Toutanova, and M. Collins, “Sparse, dense, and attentional representations for text retrieval,” Transactions of the Association for Computational Linguistics, vol. 9, pp. 329–345, 2021.
- S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu, “Unifying large language models and knowledge graphs: A roadmap,” arXiv preprint arXiv:2306.08302, 2023.
- H. He, H. Zhang, and D. Roth, “Rethinking with retrieval: Faithful large language model inference,” arXiv preprint arXiv:2301.00303, 2022.
- H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal, “Interleaving retrieval with chain-of-thought reasoning for knowledge-intensive multi-step questions,” arXiv preprint arXiv:2212.10509, 2022.
- W. Xiong, M. Yu, S. Chang, X. Guo, and W. Y. Wang, “Improving question answering over incomplete kbs with knowledge-aware reader,” arXiv preprint arXiv:1905.07098, 2019.
- S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, “A survey on knowledge graphs: Representation, acquisition, and applications,” IEEE transactions on neural networks and learning systems, vol. 33, no. 2, pp. 494–514, 2021.
- J. Zhang, B. Chen, L. Zhang, X. Ke, and H. Ding, “Neural, symbolic and neural-symbolic reasoning on knowledge graphs,” AI Open, vol. 2, pp. 14–35, 2021.
- T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, et al., “Never-ending learning,” Communications of the ACM, vol. 61, no. 5, pp. 103–115, 2018.
- B. Abu-Salih, “Domain-specific knowledge graphs: A survey,” Journal of Network and Computer Applications, vol. 185, p. 103076, 2021.
- L. Zhong, J. Wu, Q. Li, H. Peng, and X. Wu, “A comprehensive survey on automatic knowledge graph construction,” arXiv preprint arXiv:2302.05019, 2023.
- D. Nadeau and S. Sekine, “A survey of named entity recognition and classification,” Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26, 2007.
- R. Grishman and B. M. Sundheim, “Message understanding conference-6: A brief history,” in COLING 1996 Volume 1: The 16th International Conference on Computational Linguistics, 1996.
- G. Salton and C. Buckley, “Term-weighting approaches in automatic text retrieval,” Information processing & management, vol. 24, no. 5, pp. 513–523, 1988.
- J. Ramos et al., “Using tf-idf to determine word relevance in document queries,” in Proceedings of the first instructional conference on machine learning, vol. 242, pp. 29–48, Citeseer, 2003.
- M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision for relation extraction without labeled data,” in Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pp. 1003–1011, 2009.
- L. Luo, Y.-F. Li, G. Haffari, and S. Pan, “Normalizing flow-based neural process for few-shot knowledge graph completion,” arXiv preprint arXiv:2304.08183, 2023.
- G. Wan, S. Pan, C. Gong, C. Zhou, and G. Haffari, “Reasoning like human: Hierarchical reinforcement learning for knowledge graph reasoning,” in International Joint Conference on Artificial Intelligence, International Joint Conference on Artificial Intelligence, 2021.
- Y. Wang, N. Lipka, R. A. Rossi, A. Siu, R. Zhang, and T. Derr, “Knowledge graph prompting for multi-document question answering,” arXiv preprint arXiv:2308.11730, 2023.
- Y. Tian, H. Song, Z. Wang, H. Wang, Z. Hu, F. Wang, N. V. Chawla, and P. Xu, “Graph neural prompting with large language models,” arXiv preprint arXiv:2309.15427, 2023.
- M. Yasunaga, A. Bosselut, H. Ren, X. Zhang, C. D. Manning, P. S. Liang, and J. Leskovec, “Deep bidirectional language-knowledge graph pretraining,” Advances in Neural Information Processing Systems, vol. 35, pp. 37309–37323, 2022.
- H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288, 2023.
- Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia, Z. Ji, T. Yu, W. Chung, et al., “A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity,” arXiv preprint arXiv:2302.04023, 2023.
- M. Agarwal, P. Sharma, and A. Goswami, “Analysing the applicability of chatgpt, bard, and bing to generate reasoning-based multiple-choice questions in medical physiology,” Cureus, vol. 15, no. 6, 2023.
- J. MacQueen et al., “Some methods for classification and analysis of multivariate observations,” in Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, pp. 281–297, Oakland, CA, USA, 1967.
- S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information theory, vol. 28, no. 2, pp. 129–137, 1982.
- U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17, pp. 395–416, 2007.
- S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal algorithm for approximate nearest neighbor searching fixed dimensions,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 891–923, 1998.
- X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using gaussian fields and harmonic functions,” in Proceedings of the Twentieth International Conference on International Conference on Machine Learning, ICML’03, p. 912–919, AAAI Press, 2003.
- M. Ho, A. Sharma, J. Chang, M. Saxon, S. Levy, Y. Lu, and W. Y. Wang, “Wikiwhy: Answering and explaining cause-and-effect questions,” arXiv preprint arXiv:2210.12152, 2022.