Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
27 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
225 tokens/sec
2000 character limit reached

Strong Constraints on Dark Matter Annihilation in Ursa Major III/UNIONS 1 (2311.14611v2)

Published 24 Nov 2023 in astro-ph.HE, astro-ph.GA, and hep-ph

Abstract: Very recent work has identified a new satellite galaxy, Ursa Major III/UNIONS I, which is the faintest such system ever observed. Dynamical considerations indicate that if the system is in equilibrium, it is likely to be highly dark matter dominated. This, in combination with its proximity, predicts that it may be the preeminent dwarf spheroidal galaxy target for dark matter indirect detection searches. We utilize 15 years of Fermi-LAT data to search for $\gamma$-ray emission from Ursa Major III. Finding no excess, we set strong constraints on dark matter annihilation. Intriguingly, if the high J-factor of Ursa Major III is confirmed, standard thermal dark matter annihilation to $b\bar{b}$ final states would be ruled out for dark matter masses up to 4 TeV. The discovery of Ursa Major III, combined with recent tentative measurements of other high J-factor systems, suggests the exciting possibility that near-future data could produce transformative constraints on thermal dark matter.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. L. Bergström, Rept. Prog. Phys. 63, 793 (2000), arXiv:hep-ph/0002126 .
  2. A. Geringer-Sameth and S. M. Koushiappas, Phys. Rev. Lett.  107, 241303 (2011), arXiv:1108.2914 [astro-ph.CO] .
  3. E. A. Baltz et al., JCAP 07, 013 (2008), arXiv:0806.2911 [astro-ph] .
  4. A. A. Abdo et al. (Fermi-LAT), Astrophys. J. 712, 147 (2010), arXiv:1001.4531 [astro-ph.CO] .
  5. M. Ackermann et al. (Fermi-LAT), Phys. Rev. D 89, 042001 (2014), arXiv:1310.0828 [astro-ph.HE] .
  6. M. Ackermann et al. (Fermi-LAT), Phys. Rev. Lett. 115, 231301 (2015), arXiv:1503.02641 [astro-ph.HE] .
  7. A. Albert et al. (Fermi-LAT, DES), Astrophys. J. 834, 110 (2017), arXiv:1611.03184 [astro-ph.HE] .
  8. T. Linden, Phys. Rev. D 101, 043017 (2020), arXiv:1905.11992 [astro-ph.HE] .
  9. K. Bechtol et al. (DES), Astrophys. J. 807, 50 (2015), arXiv:1503.02584 [astro-ph.GA] .
  10. J. D. Simon et al. (DES), Astrophys. J. 808, 95 (2015), arXiv:1504.02889 [astro-ph.GA] .
  11. D. Hooper and T. Linden, JCAP 09, 016 (2015), arXiv:1503.06209 [astro-ph.HE] .
  12. A. B. Pace and L. E. Strigari, Monthly Notices of the Royal Astronomical Society 482, 3480 (2019), arXiv:1802.06811 [astro-ph.GA] .
  13. S. Abdollahi et al. (Fermi-LAT), Astrophys. J. Suppl. 247, 33 (2020), arXiv:1902.10045 [astro-ph.HE] .
  14. J. D. Simon and M. Geha, Astrophys. J.  670, 313 (2007), arXiv:0706.0516 [astro-ph] .
  15. S. S. Wilks, Ann. Math. Statist. 9, 60 (1938).
  16. N. C. Amorisco and N. W. Evans, Monthly Notices of the Royal Astronomical Society 411, 2118 (2011), arXiv:1009.1813 [astro-ph.GA] .
  17. A. Drlica-Wagner et al. (LSST Dark Matter Group),   (2019), arXiv:1902.01055 [astro-ph.CO] .
  18. S. Ando et al., JCAP 10, 040 (2019), arXiv:1905.07128 [astro-ph.CO] .
  19. Astropy Collaboration, Astrophys. J.  935, 167 (2022), arXiv:2206.14220 [astro-ph.IM] .
  20. J. D. Hunter, Computing in Science & Engineering 9, 90 (2007).
  21. T. pandas development team, “pandas-dev/pandas: Pandas,”  (2020).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com