Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluation of a Non-Coherent Ultra-Wideband Transceiver for Micropower Sensor Nodes (2311.14523v2)

Published 24 Nov 2023 in eess.SY and cs.SY

Abstract: Spatial and contextual awareness has the potential to revolutionize sensor nodes, enabling spatially augmented data collection and location-based services. With its high bandwidth, superior energy efficiency, and precise time-of-flight measurements, ultra-wideband (UWB) technology emerges as an ideal solution for such devices. This paper presents an evaluation and comparison of a non-coherent UWB transceiver within the context of highly energy-constrained wireless sensing nodes and pervasive Internet of Things (IoT) devices. Experimental results highlight the unique properties of UWB transceivers, showcasing efficient data transfer ranging from 2 kbit/s to 7.2 Mbit/s while reaching an energy consumption of 0.29 nJ/bit and 1.39 nJ/bit for transmitting and receiving, respectively. Notably, a ranging accuracy of up to +/-25 cm can be achieved. Moreover, the peak power consumption of the UWB transceiver is with 6.7 mW in TX and 23 mW in RX significantly lower than that of other commercial UWB transceivers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. D. Zou, W. Meng, S. Han, K. He, and Z. Zhang, “Toward Ubiquitous LBS: Multi-Radio Localization and Seamless Positioning,” IEEE Wireless Communications, vol. 23, no. 6, pp. 107–113, 2016, doi: 10.1109/MWC.2016.1500177WC.
  2. Y. Li et al., “Toward Location-Enabled IoT (LE-IoT): IoT Positioning Techniques, Error Sources, and Error Mitigation,” IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4035–4062, 2021, doi: 10.1109/JIOT.2020.3019199.
  3. A. Elsharkawy, K. Naheem, D. Koo, and M. S. Kim, “A UWB-Driven Self-Actuated Projector Platform for Interactive Augmented Reality Applications,” Applied Sciences, vol. 11, no. 6, 2021, doi: 10.3390/app11062871.
  4. P. Mayer, M. Magno, and L. Benini, “Self-sustaining Ultra-wideband Positioning System for Event-driven Indoor Localization,” IEEE Internet of Things Journal, pp. 1–13, 2023, doi: 10.1109/JIOT.2023.3289568.
  5. C. Zhao, A. Song, Y. Zhu, S. Jiang, F. Liao, and Y. Du, “Data-Driven Indoor Positioning Correction for Infrastructure-Enabled Autonomous Driving Systems: A Lifelong Framework,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 4, pp. 3908–3921, 2023, doi: 10.1109/TITS.2022.3233563.
  6. M. A. Cheema, “Indoor location-based services: Challenges and opportunities,” SIGSPATIAL Special, vol. 10, no. 2, p. 10–17, nov 2018, doi: 10.1145/3292390.3292394.
  7. L. Flueratoru, S. Wehrli, M. Magno, E. S. Lohan, and D. Niculescu, “High-accuracy ranging and localization with ultrawideband communications for energy-constrained devices,” IEEE Internet of Things Journal, vol. 9, no. 10, pp. 7463–7480, 2022, doi: 10.1109/jiot.2021.3125256.
  8. D. Dardari et al., “An Ultra-Low Power Ultra-Wide Bandwidth Positioning System,” IEEE Journal of Radio Frequency Identification, vol. 4, no. 4, pp. 353–364, 2020, doi: 10.1109/JRFID.2020.3008200.
  9. J. Bauwens, N. Macoir, S. Giannoulis, I. Moerman, and E. De Poorter, “UWB-MAC: MAC protocol for UWB localization using ultra-low power anchor nodes,” Ad Hoc Networks, vol. 123, p. 102637, dec 2021, doi: 10.1016/j.adhoc.2021.102637.
  10. W. S. Jeon, H. S. Oh, and D. G. Jeong, “Decision of Ranging Interval for IEEE 802.15.4z UWB Ranging Devices,” IEEE Internet of Things Journal, vol. 8, no. 20, pp. 15 628–15 638, 2021, doi: 10.1109/JIOT.2021.3074571.
  11. J. Kolakowski, V. Djaja-Josko, M. Kolakowski, and K. Broczek, “UWB/BLE Tracking System for Elderly People Monitoring,” Sensors, vol. 20, no. 6, p. 1574, 2020, doi: 10.3390/s20061574.
  12. D. Coppens, A. Shahid, S. Lemey, B. Van Herbruggen, C. Marshall, and E. De Poorter, “An Overview of UWB Standards and Organizations (IEEE 802.15.4, FiRa, Apple): Interoperability Aspects and Future Research Directions,” IEEE Access, vol. 10, pp. 70 219–70 241, 2022, doi: 10.1109/ACCESS.2022.3187410.
  13. S. Cortesi, C. Vogt, and M. Magno, “Comparison Between an Rssi- and an Mcpd-Based Ble Indoor Localization System,” Computers, vol. 12, no. 3, p. 59, 2023, doi: 10.3390/computers12030059.
  14. A. Mackey, P. Spachos, L. Song, and K. N. Plataniotis, “Improving Ble Beacon Proximity Estimation Accuracy Through Bayesian Filtering,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3160–3169, 2020, doi: 10.1109/jiot.2020.2965583.
  15. X. Zhu, M. Handte, and R. Eskicioglu, “RF Technologies for Indoor Localization and Positioning,” in Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems, 11 2018, doi: 10.1145/3274783.3275217.
  16. F. Långberg and J. Thurborg, “Design of a size reduced antenna array for angle of arrival (aoa) estimation for ble 5.1,” Master’s thesis, Lund University, Department of Electrical and Information Technology, 11 2020, accessed 27.06.2023. [Online]. Available: https://lup.lub.lu.se/luur/download?func=downloadFile\&recordOId=903\\1557\&fileOId=9031558.
  17. Nordic Semiconductor, “nrf5340 datasheet,” 2023, accessed 27.06.2023. [Online]. Available: https://infocenter.nordicsemi.com/pdf/nRF5340\_PS\_v1.3.pdf.
  18. T. Margiani, S. Cortesi, M. Keller, C. Vogt, T. Polonelli, and M. Magno, “Angle of Arrival and Centimeter Distance Estimation on a Smart Uwb Sensor Node,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–10, 2023, doi: 10.1109/tim.2023.3282289.
  19. T. Polonelli, S. Schlapfer, and M. Magno, “Performance Comparison between Decawave DW1000 and DW3000 in low-power double side ranging applications,” in 2022 IEEE Sensors Applications Symposium (SAS), 8 2022, doi: 10.1109/sas54819.2022.9881375.
  20. R. Juran, P. Mlynek, M. Stusek, P. Masek, M. Mikulasek, and A. Ometov, “Hands-On Experience with UWB: Angle of Arrival Accuracy Evaluation in Channel 9,” in 2022 14th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 10 2022, pp. 45–49, doi: 10.1109/icumt57764.2022.9943504.
  21. A. Heinrich, S. Krollmann, F. Putz, and M. Hollick, “Smartphones with UWB: Evaluating the Accuracy and Reliability of UWB Ranging,” arXiv preprint arXiv:2303.11220, 2023, doi: 10.48550/ARXIV.2303.11220.
  22. Qorvo, “Qorvo dw3220 datasheet,” 2020, accessed 27.06.2023. [Online]. Available: https://www.qorvo.com/products/d/da008142.
  23. AMO Amosense, “Amotech sr040 & sr150 datasheet,” 2023, accessible after purchase.
  24. Microchip, “Microchip ata8352 datasheet,” 2021, accessed 27.06.2023, needs registration. [Online]. Available: https://t.ly/KM\_Y.
  25. ——, “Microchip data communication and ranging,” 2023, accessed 30.06.2023. [Online]. Available: https://t.ly/Gga3.
  26. Spark Microsystems, “Sr1010 datasheet,” 2020, accessed 27.06.2023. [Online]. Available: https://www.sparkmicro.com/wp-content/uploads/2023/04/datasheet\_SR1010-4.pdf.
  27. ——, “Sr1020 datasheet,” 2020, accessed 27.06.2023. [Online]. Available: https://www.sparkmicro.com/wp-content/uploads/2023/04/datasheet\_SR1020-2.pdf.
  28. M. Woolley, “Bluetooth® Core Specification Version 5.0 Feature Enhancements,” 2021, accessed 24.06.2023. [Online]. Available: https://www.bluetooth.com/wp-content/uploads/2019/03/Bluetooth\_5-FINAL.pdf.

Summary

We haven't generated a summary for this paper yet.