Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FAMAC: A Federated Assisted Modified Actor-Critic Framework for Secured Energy Saving in 5G and Beyond Networks (2311.14509v2)

Published 24 Nov 2023 in eess.SY and cs.SY

Abstract: The constant surge in the traffic demand on cellular networks has led to continuous expansion in network capacity in order to accommodate existing and new service demands. This has given rise to ultra-dense base station deployment in 5G and beyond networks which leads to increased energy consumption in the network. Hence, these ultra-dense base station deployments must be operated in a way that the energy consumption of the network can be adapted to the spatio-temporal traffic demands on the network in order to minimize the overall energy consumption of the network. To achieve this goal, we leverage two artificial intelligence algorithms, federated learning and actor-critic algorithm, to develop a proactive and intelligent base station switching framework that can learn the operating policy of the small base station in an ultra-dense heterogeneous network (UDHN) that would result in maximum energy saving in the network while respecting the quality of service (QoS) constraints. The performance evaluation reveals that the proposed framework can achieve an energy saving that is about 77% more than that of the state-of-the-art solutions while respecting the QoS constraints of the network.

Citations (1)

Summary

We haven't generated a summary for this paper yet.