Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum Cardinality $f$-Matching in Time $O(n^{2/3}m)$ (2311.14236v1)

Published 24 Nov 2023 in cs.DS

Abstract: We present an algorithm that finds a maximum cardinality $f$-matching of a simple graph in time $O(n{2/3} m)$. Here $f:V\to \mathbb{N}$ is a given function, and an $f$-matching is a subgraph wherein each vertex $v\in V$ has degree $\le f(v)$. This result generalizes a string of algorithms, concentrating on simple bipartite graphs. The bipartite case is based on the notion of level graph, introduced by Dinic for network flow. For general graphs the ``level'' of a vertex is unclear: A given vertex can occur on many different levels in augmenting trails. In fact there does not seem to be a unique level graph, our notion of level graph depends on the trails being analyzed. Our analysis presents new properties of blossoms of shortest augmenting trails. Our algorithm, unmodified, is also efficient on multigraphs, achieving time $O(\min {\sqrt {f(V)}, n}\,m)$, for $f(V)=\sum_vf(v)$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. L. Chen, R. Kyng, Y. Liu, R. Peng, M.P. Gutenberg, S. Sachdeva, “Maximum flow and minimum-cost flow in almost-linear time”, arXiv:2010.01102, 2022.
  2. E.A. Dinic, “Algorithm for solution of a problem of maximum flow in networks with power estimation”, in Russian, Soviet Mathematics Doklody 11, 1970, pp. 1277–1280.
  3. J. Edmonds, “Maximum matching and a polyhedron with 0,1-vertices”, J. Res. Nat. Bur. Standards 69B, 1965, pp. 125–130.
  4. S. Even and R.E. Tarjan, “Network flow and testing graph connectivity”, SIAM J. Comput., 4, 1975, pp. 507–518.
  5. H.N. Gabow, “Blocking trails for f𝑓fitalic_f-factors of multigraphs,” Algorithmica, https://doi.org/10.1007/s00453-023-01126-y, 2023.
  6. H.N. Gabow and R.E. Tarjan, “Faster scaling algorithms for network problems,” SIAM J. Comput., 18, 5, 1989, pp. 1013–1036.
  7. J.E. Hopcroft and R.M. Karp, “An n2.5superscript𝑛2.5n^{2.5}italic_n start_POSTSUPERSCRIPT 2.5 end_POSTSUPERSCRIPT algorithm for maximum matchings in bipartite graphs”, SIAM J. Comput., 2, 1973, pp. 225–231.
  8. D. Huang and S. Pettie, “Approximate generalized matching: f𝑓fitalic_f-matchings and f𝑓fitalic_f-edge covers”, Algorithmica 84, 7, 2022, pp. 1952–1992.
  9. A.V. Karzanov, “On finding maximum flows in network with special structure and some applications”, in Russian, Math. Problems for Production Control 5, Moscow State University Press, 1973, pp. 81–94.
  10. A.V. Karzanov, “An exact estimate of an algorithm for finding a maximum flow, applied to the problems ’of representatives’“, in Russian, Voprosy Kibernetiki, Trudy Seminara po Kombinatorno ı˘normal-˘italic-ı\breve{\imath}over˘ start_ARG italic_ı end_ARG Matematike 5, Sovetskoe Radio, Moscow, 1973, pp. 66–70.
  11. J.B. Orlin and R.K. Ahuja, “New scaling algorithms for the assignment and minimum mean cycle problems”, Math. Programming 54, 1992, pp. 41–56.
  12. V.V. Vazirani, “A theory of alternating paths and blossoms for proving correctness of the O⁢(V⁢E)𝑂𝑉𝐸O(\sqrt{V}E)italic_O ( square-root start_ARG italic_V end_ARG italic_E ) general graph maximum matching algorithm”, Combinatorica, 14, 1, 1994, pp. 71–109.
  13. V.V. Vazirani, “A simplification of the MV matching algorithm and its proof”, CoRR, abs/1210.4594v5, Aug.27, 2013, 32 pages; also “A proof of the MV matching algorithm”, manuscript, May 13, 2014, 42 pages.

Summary

We haven't generated a summary for this paper yet.