Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lead-acid battery lifetime extension in solar home systems under different operating conditions (2311.14098v1)

Published 23 Nov 2023 in eess.SY and cs.SY

Abstract: Solar home systems (SHS) provide low-cost electricity access for rural off-grid communities. Batteries are a crucial part of the system, however they are often the first point of failure due to shorter lifetimes. Using field data, this work models the degradation of lead-acid batteries for different SHS use-cases, finding the dominant ageing mechanisms in each case. Corrosion is the dominant ageing mechanisms in all cases apart from the highest use case. This is caused by extended time at high state of charge (SOC) and hence high voltage. A new voltage control scheme is proposed for one of the use cases dominated by corrosion, whereby the number of days between full recharges varies depending on the degradation mechanisms the battery experiences. Simulating the new voltage control scheme yields a 25% increase in battery lifetime whilst ensuring no loss of load to the user.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. “Goal 7 Department of Economic and Social Affairs.” [Online]. Available: https://sdgs.un.org/goals/goal7
  2. R. G. Charles, M. L. Davies, P. Douglas, I. L. Hallin, and I. Mabbett, “Sustainable energy storage for solar home systems in rural Sub-Saharan Africa – A comparative examination of lifecycle aspects of battery technologies for circular economy, with emphasis on the South African context,” Energy, vol. 166, pp. 1207–1215, 1 2019.
  3. S. Paul Ayeng’o, T. Schirmer, K. P. Kairies, H. Axelsen, and D. Uwe Sauer, “Comparison of off-grid power supply systems using lead-acid and lithium-ion batteries,” Solar Energy, vol. 162, pp. 140–152, 3 2018.
  4. S. Lavety, R. K. Keshri, and M. A. Chaudhari, “Evaluation of charging strategies for valve regulated lead-acid battery,” IEEE Access, vol. 8, pp. 164 747–164 761, 2020.
  5. B. Bogno, J. P. Sawicki, T. Salame, M. Aillerie, F. Saint-Eve, O. Hamandjoda, and B. Tibi, “Improvement of safety, longevity and performance of lead acid battery in off-grid PV systems,” International Journal of Hydrogen Energy, vol. 42, no. 5, pp. 3466–3478, 2 2017.
  6. J. Badeda, M. Kwiecien, D. Schulte, T. Rüwald, and D. U. Sauer, “Adaptive battery steering and management system for the optimized operation of stationary battery energy storage systems in multi-use applications,” IEEE International Telecommunications Energy Conference, 2017.
  7. V. Svoboda, H. Wenzl, R. Kaiser, A. Jossen, I. Baring-Gould, J. Manwell, P. Lundsager, H. Bindner, T. Cronin, P. Nørgård, A. Ruddell, A. Perujo, K. Douglas, C. Rodrigues, A. Joyce, S. Tselepis, N. van der Borg, F. Nieuwenhout, N. Wilmot, F. Mattera, and D. U. Sauer, “Operating conditions of batteries in off-grid renewable energy systems,” Solar Energy, vol. 81, no. 11, pp. 1409–1425, 11 2007.
  8. J. M. Lujano-Rojas, R. Dufo-López, J. L. Atencio-Guerra, E. M. Rodrigues, J. L. Bernal-Agustín, and J. P. Catalão, “Operating conditions of lead-acid batteries in the optimization of hybrid energy systems and microgrids,” Applied Energy, vol. 179, pp. 590–600, 10 2016.
  9. R. Dufo-López, J. M. Lujano-Rojas, and J. L. Bernal-Agustín, “Comparison of different lead-acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems,” Applied Energy, vol. 115, pp. 242–253, 2 2014.
  10. J. Schiffer, D. U. Sauer, H. Bindner, T. Cronin, P. Lundsager, and R. Kaiser, “Model prediction for ranking lead-acid batteries according to expected lifetime in renewable energy systems and autonomous power-supply systems,” Journal of Power Sources, vol. 168, no. 1 SPEC. ISS., pp. 66–78, 5 2007.
  11. V. Sulzer, S. J. Chapman, C. P. Please, D. A. Howey, and C. W. Monroe, “Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: Part I. Physical Model,” Journal of The Electrochemical Society, vol. 166, no. 12, pp. A2363–A2371, 2019.
  12. N. Bashir, H. S. Sardar, M. Nasir, N. U. Hassan, and H. A. Khan, “Lifetime maximization of lead-acid batteries in small scale UPS and distributed generation systems,” in 2017 IEEE Manchester PowerTech, Powertech 2017, 7 2017.
  13. A. Aitio and D. A. Howey, “Predicting battery end of life from solar off-grid system field data using machine learning,” Joule, vol. 5, no. 12, pp. 3204–3220, 12 2021.
  14. V. Kumtepeli, R. Perriment, and D. A. Howey, “Fast dynamic time warping and clustering in C++,” 7 2023. [Online]. Available: http://arxiv.org/abs/2307.04904
  15. P. Ruetschi, “Aging mechanisms and service life of lead-acid batteries,” in Journal of Power Sources, vol. 127, no. 1-2, 3 2004, pp. 33–44.
  16. R. Wagner and D. U. Sauer, “Charge strategies for valve-regulated lead/acid batteries in solar power applications,” Journal of Power Sources, 2001.
  17. J. Bouet and J. P. Pompon, “Analyse des causes de degradation des plaques positives de batteries au plomb,” Electrochimica Acta, vol. 26, no. 10, pp. 1477–1487, 1981.
  18. N. Collath, B. Tepe, S. Englberger, A. Jossen, and H. Hesse, “Aging aware operation of lithium-ion battery energy storage systems: A review,” Journal of Energy Storage, vol. 55, 2022.
  19. A. Allahham, D. Greenwood, C. Patsios, and P. Taylor, “Adaptive receding horizon control for battery energy storage management with age-and-operation-dependent efficiency and degradation,” Electric Power Systems Research, vol. 209, 8 2022.
  20. H. Yang, H. Wang, G. Chen, and G. Wu, “Influence of the charge regulator strategy on state of charge and lifetime of VRLA battery in household photovoltaic systems,” Solar Energy, vol. 80, no. 3, pp. 281–287, 3 2006.
  21. Y. S. Wong, W. G. Hurley, and W. H. Wölfle, “Charge regimes for valve-regulated lead-acid batteries: Performance overview inclusive of temperature compensation,” Journal of Power Sources, vol. 183, no. 2, pp. 783–791, 9 2008.
Citations (1)

Summary

We haven't generated a summary for this paper yet.