Assessing the Impact of Noise on Quantum Neural Networks: An Experimental Analysis (2311.14057v1)
Abstract: In the race towards quantum computing, the potential benefits of quantum neural networks (QNNs) have become increasingly apparent. However, Noisy Intermediate-Scale Quantum (NISQ) processors are prone to errors, which poses a significant challenge for the execution of complex algorithms or quantum machine learning. To ensure the quality and security of QNNs, it is crucial to explore the impact of noise on their performance. This paper provides a comprehensive analysis of the impact of noise on QNNs, examining the Mottonen state preparation algorithm under various noise models and studying the degradation of quantum states as they pass through multiple layers of QNNs. Additionally, the paper evaluates the effect of noise on the performance of pre-trained QNNs and highlights the challenges posed by noise models in quantum computing. The findings of this study have significant implications for the development of quantum software, emphasizing the importance of prioritizing stability and noise-correction measures when developing QNNs to ensure reliable and trustworthy results. This paper contributes to the growing body of literature on quantum computing and quantum machine learning, providing new insights into the impact of noise on QNNs and paving the way towards the development of more robust and efficient quantum algorithms.
- S. Gupta and R. Zia, “Quantum neural networks,” Journal of Computer and System Sciences, vol. 63, no. 3, pp. 355–383, 2001. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022000001917696
- M. Schuld, I. Sinayskiy, and F. Petruccione, “The quest for a quantum neural network,” Quantum Information Processing, vol. 13, no. 11, pp. 2567–2586, Nov 2014. [Online]. Available: https://doi.org/10.1007/s11128-014-0809-8
- D. Arias, I. García Rodríguez de Guzmán, M. Rodríguez, E. B. Terres, B. Sanz, J. Gaviria de la Puerta, I. Pastor, A. Zubillaga, and P. García Bringas, “Let’s do it right the first time: Survey on security concerns in the way to quantum software engineering,” Neurocomputing, vol. 538, p. 126199, Jun. 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231223003041
- M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Transformation of quantum states using uniformly controlled rotations,” Jul. 2004, arXiv:quant-ph/0407010. [Online]. Available: http://arxiv.org/abs/quant-ph/0407010
- M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, “Circuit-centric quantum classifiers,” Physical Review A, vol. 101, no. 3, mar 2020. [Online]. Available: https://doi.org/10.1103/physreva.101.032308
- M. Henderson, S. Shakya, S. Pradhan, and T. Cook, “Quanvolutional Neural Networks: Powering Image Recognition with Quantum Circuits,” Apr. 2019, arXiv:1904.04767 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1904.04767
- M. Maronese, C. Destri, and E. Prati, “Quantum activation functions for quantum neural networks,” Jan. 2022, arXiv:2201.03700 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2201.03700
- J. Bausch, “Recurrent Quantum Neural Networks,” Jun. 2020, arXiv:2006.14619 [quant-ph, stat]. [Online]. Available: http://arxiv.org/abs/2006.14619
- M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, “Variational Quantum Algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, Aug. 2021, arXiv:2012.09265 [quant-ph, stat]. [Online]. Available: http://arxiv.org/abs/2012.09265
- P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Physical Review Letters, vol. 113, no. 13, p. 130503, Sep. 2014, arXiv:1307.0471 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1307.0471
- T. Hur, L. Kim, and D. K. Park, “Quantum convolutional neural network for classical data classification,” Quantum Machine Intelligence, vol. 4, no. 1, p. 3, Feb 2022. [Online]. Available: https://doi.org/10.1007/s42484-021-00061-x
- O. Lockwood and M. Si, “Reinforcement Learning with Quantum Variational Circuits,” Aug. 2020, arXiv:2008.07524 [quant-ph, stat]. [Online]. Available: http://arxiv.org/abs/2008.07524
- O. Lockwood, “Playing Atari with Hybrid Quantum-Classical Reinforcement Learning,” NeurIPS, 2021.
- S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J. Coles, “Noise-induced barren plateaus in variational quantum algorithms,” Nature Communications, vol. 12, no. 1, p. 6961, Nov. 2021, number: 1 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41467-021-27045-6
- J. Roffe, “Quantum Error Correction: An Introductory Guide,” Contemporary Physics, vol. 60, no. 3, pp. 226–245, Jul. 2019, arXiv:1907.11157 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1907.11157
- J. Liu, F. Wilde, A. A. Mele, L. Jiang, and J. Eisert, “Noise can be helpful for variational quantum algorithms,” Oct. 2022, arXiv:2210.06723 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2210.06723
- H.-Y. Huang, M. Broughton, J. Cotler, S. Chen, J. Li, M. Mohseni, H. Neven, R. Babbush, R. Kueng, J. Preskill, and J. R. McClean, “Quantum advantage in learning from experiments,” Science, vol. 376, no. 6598, pp. 1182–1186, Jun. 2022, arXiv:2112.00778 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2112.00778
Collections
Sign up for free to add this paper to one or more collections.