Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 95 TPS
Gemini 2.5 Pro 47 TPS Pro
GPT-5 Medium 29 TPS
GPT-5 High 33 TPS Pro
GPT-4o 102 TPS
GPT OSS 120B 471 TPS Pro
Kimi K2 192 TPS Pro
2000 character limit reached

Assessing the Impact of Noise on Quantum Neural Networks: An Experimental Analysis (2311.14057v1)

Published 23 Nov 2023 in cs.AI

Abstract: In the race towards quantum computing, the potential benefits of quantum neural networks (QNNs) have become increasingly apparent. However, Noisy Intermediate-Scale Quantum (NISQ) processors are prone to errors, which poses a significant challenge for the execution of complex algorithms or quantum machine learning. To ensure the quality and security of QNNs, it is crucial to explore the impact of noise on their performance. This paper provides a comprehensive analysis of the impact of noise on QNNs, examining the Mottonen state preparation algorithm under various noise models and studying the degradation of quantum states as they pass through multiple layers of QNNs. Additionally, the paper evaluates the effect of noise on the performance of pre-trained QNNs and highlights the challenges posed by noise models in quantum computing. The findings of this study have significant implications for the development of quantum software, emphasizing the importance of prioritizing stability and noise-correction measures when developing QNNs to ensure reliable and trustworthy results. This paper contributes to the growing body of literature on quantum computing and quantum machine learning, providing new insights into the impact of noise on QNNs and paving the way towards the development of more robust and efficient quantum algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. S. Gupta and R. Zia, “Quantum neural networks,” Journal of Computer and System Sciences, vol. 63, no. 3, pp. 355–383, 2001. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022000001917696
  2. M. Schuld, I. Sinayskiy, and F. Petruccione, “The quest for a quantum neural network,” Quantum Information Processing, vol. 13, no. 11, pp. 2567–2586, Nov 2014. [Online]. Available: https://doi.org/10.1007/s11128-014-0809-8
  3. D. Arias, I. García Rodríguez de Guzmán, M. Rodríguez, E. B. Terres, B. Sanz, J. Gaviria de la Puerta, I. Pastor, A. Zubillaga, and P. García Bringas, “Let’s do it right the first time: Survey on security concerns in the way to quantum software engineering,” Neurocomputing, vol. 538, p. 126199, Jun. 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231223003041
  4. M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Transformation of quantum states using uniformly controlled rotations,” Jul. 2004, arXiv:quant-ph/0407010. [Online]. Available: http://arxiv.org/abs/quant-ph/0407010
  5. M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, “Circuit-centric quantum classifiers,” Physical Review A, vol. 101, no. 3, mar 2020. [Online]. Available: https://doi.org/10.1103/physreva.101.032308
  6. M. Henderson, S. Shakya, S. Pradhan, and T. Cook, “Quanvolutional Neural Networks: Powering Image Recognition with Quantum Circuits,” Apr. 2019, arXiv:1904.04767 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1904.04767
  7. M. Maronese, C. Destri, and E. Prati, “Quantum activation functions for quantum neural networks,” Jan. 2022, arXiv:2201.03700 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2201.03700
  8. J. Bausch, “Recurrent Quantum Neural Networks,” Jun. 2020, arXiv:2006.14619 [quant-ph, stat]. [Online]. Available: http://arxiv.org/abs/2006.14619
  9. M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, “Variational Quantum Algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, Aug. 2021, arXiv:2012.09265 [quant-ph, stat]. [Online]. Available: http://arxiv.org/abs/2012.09265
  10. P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Physical Review Letters, vol. 113, no. 13, p. 130503, Sep. 2014, arXiv:1307.0471 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1307.0471
  11. T. Hur, L. Kim, and D. K. Park, “Quantum convolutional neural network for classical data classification,” Quantum Machine Intelligence, vol. 4, no. 1, p. 3, Feb 2022. [Online]. Available: https://doi.org/10.1007/s42484-021-00061-x
  12. O. Lockwood and M. Si, “Reinforcement Learning with Quantum Variational Circuits,” Aug. 2020, arXiv:2008.07524 [quant-ph, stat]. [Online]. Available: http://arxiv.org/abs/2008.07524
  13. O. Lockwood, “Playing Atari with Hybrid Quantum-Classical Reinforcement Learning,” NeurIPS, 2021.
  14. S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J. Coles, “Noise-induced barren plateaus in variational quantum algorithms,” Nature Communications, vol. 12, no. 1, p. 6961, Nov. 2021, number: 1 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41467-021-27045-6
  15. J. Roffe, “Quantum Error Correction: An Introductory Guide,” Contemporary Physics, vol. 60, no. 3, pp. 226–245, Jul. 2019, arXiv:1907.11157 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1907.11157
  16. J. Liu, F. Wilde, A. A. Mele, L. Jiang, and J. Eisert, “Noise can be helpful for variational quantum algorithms,” Oct. 2022, arXiv:2210.06723 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2210.06723
  17. H.-Y. Huang, M. Broughton, J. Cotler, S. Chen, J. Li, M. Mohseni, H. Neven, R. Babbush, R. Kueng, J. Preskill, and J. R. McClean, “Quantum advantage in learning from experiments,” Science, vol. 376, no. 6598, pp. 1182–1186, Jun. 2022, arXiv:2112.00778 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2112.00778
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.