Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotically Tight Bayesian Cramér-Rao Bound (2311.13834v1)

Published 23 Nov 2023 in cs.IT, eess.SP, and math.IT

Abstract: Performance bounds for parameter estimation play a crucial role in statistical signal processing theory and applications. Two widely recognized bounds are the Cram\'{e}r-Rao bound (CRB) in the non-Bayesian framework, and the Bayesian CRB (BCRB) in the Bayesian framework. However, unlike the CRB, the BCRB is asymptotically unattainable in general, and its equality condition is restrictive. This paper introduces an extension of the Bobrovsky--Mayer-Wolf--Zakai class of bounds, also known as the weighted BCRB (WBCRB). The WBCRB is optimized by tuning the weighting function in the scalar case. Based on this result, we propose an asymptotically tight version of the bound called AT-BCRB. We prove that the AT-BCRB is asymptotically attained by the maximum {\it a-posteriori} probability (MAP) estimator. Furthermore, we extend the WBCRB and the AT-BCRB to the case of vector parameters. The proposed bounds are evaluated in several fundamental signal processing examples, such as variance estimation of white Gaussian process, direction-of-arrival estimation, and mean estimation of Gaussian process with unknown variance and prior statistical information. It is shown that unlike the BCRB, the proposed bounds are asymptotically attainable and coincide with the expected CRB (ECRB). The ECRB, which imposes uniformly unbiasedness, cannot serve as a valid lower bound in the Bayesian framework, while the proposed bounds are valid for any estimator.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. J. Tabrikian and J. Krolik, “Barankin bounds for source localization in an uncertain ocean environment,” IEEE Transactions on Signal Processing, vol. 47, no. 11, pp. 2917–2927, 1999.
  2. F. Athley, C. Engdahl, and P. Sunnergren, “On radar detection and direction finding using sparse arrays,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 4, pp. 1319–1333, 2007.
  3. F. Athley, “Threshold region performance of maximum likelihood direction of arrival estimators,” IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1359–1373, Apr. 2005.
  4. U. Oktel and R. Moses, “A Bayesian approach to array geometry design,” IEEE Transactions on Signal Processing, vol. 53, no. 5, pp. 1919–1923, 2005.
  5. T. Li, J. Tabrikian, and A. Nehorai, “A Barankin-type bound on direction estimation using acoustic sensor arrays,” IEEE Transactions on Signal Processing, vol. 59, no. 1, pp. 431–435, 2011.
  6. M. F. Keskin, V. Koivunen, and H. Wymeersch, “Limited feedforward waveform design for OFDM dual-functional radar-communications,” IEEE Transactions on Signal Processing, vol. 69, pp. 2955–2970, 2021.
  7. W. Huleihel, J. Tabrikian, and R. Shavit, “Optimal adaptive waveform design for cognitive MIMO radar,” IEEE Transactions on Signal Processing, vol. 61, no. 20, pp. 5075–5089, 2013.
  8. P. Chavali and A. Nehorai, “Scheduling and power allocation in a cognitive radar network for multiple-target tracking,” IEEE Transactions on Signal Processing, vol. 60, no. 2, pp. 715–729, 2012.
  9. S. Haykin, Y. Xue, and P. Setoodeh, “Cognitive radar: Step toward bridging the gap between neuroscience and engineering,” Proceedings of the IEEE, vol. 100, no. 11, pp. 3102–3130, 2012.
  10. M. S. Greco, F. Gini, P. Stinco, and K. Bell, “Cognitive radars: On the road to reality: Progress thus far and possibilities for the future,” IEEE Signal Processing Magazine, vol. 35, no. 4, pp. 112–125, 2018.
  11. K. L. Bell, C. J. Baker, G. E. Smith, J. T. Johnson, and M. Rangaswamy, “Cognitive radar framework for target detection and tracking,” IEEE Journal of Selected Topics in Signal Processing, vol. 9, no. 8, pp. 1427–1439, 2015.
  12. N. Rubinstein and J. Tabrikian, “Frequency diverse array signal optimization: From non-cognitive to cognitive radar,” IEEE Transactions on Signal Processing, vol. 69, pp. 6206–6220, 2021.
  13. N. Sharaga, J. Tabrikian, and H. Messer, “Optimal cognitive beamforming for target tracking in MIMO radar/sonar,” IEEE Journal of Selected Topics in Signal Processing, vol. 9, no. 8, pp. 1440–1450, 2015.
  14. J. Tabrikian, O. Isaacs, and I. Bilik, “Cognitive antenna selection for automotive radar using Bobrovsky-Zakai bound,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 4, pp. 892–903, 2021.
  15. C. R. Rao, “Information and accuracy attainable in the estimation of statistical parameters,” Bulletin of the Calcutta Mathematical Society, vol. 37, no. 3, pp. 81–91, 1945.
  16. J. Ziv and M. Zakai, “Some lower bounds on signal parameter estimation,” IEEE Transactions on Information Theory, vol. 15, no. 3, pp. 386–391, 1969.
  17. S. Bellini and G. Tartara, “Bounds on error in signal parameter estimation,” IEEE Transactions on Communications, vol. 22, no. 3, pp. 340–342, 1974.
  18. K. Bell, Y. Steinberg, Y. Ephraim, and H. Van Trees, “Extended Ziv-Zakai lower bound for vector parameter estimation,” IEEE Transactions on Information Theory, vol. 43, no. 2, pp. 624–637, 1997.
  19. S. Basu and Y. Bresler, “A global lower bound on parameter estimation error with periodic distortion functions,” IEEE Transactions on Information Theory, vol. 46, no. 3, pp. 1145–1150, 2000.
  20. A. Weiss and E. Weinstein, “A lower bound on the mean-square error in random parameter estimation,” IEEE Transactions on Information Theory, vol. 31, no. 5, pp. 680–682, 1985.
  21. E. Weinstein and A. Weiss, “A general class of lower bounds in parameter estimation,” IEEE Transactions on Information Theory, vol. 34, no. 2, pp. 338–342, 1988.
  22. I. Reuven and H. Messer, “A Barankin-type lower bound on the estimation error of a hybrid parameter vector,” IEEE Transactions on Information Theory, vol. 43, no. 3, pp. 1084–1093, 1997.
  23. B. Bobrovsky and M. Zakai, “A lower bound on the estimation error for certain diffusion processes,” IEEE Trans. on Inf. Theory, vol. 22, no. 1, pp. 45–52, 1976.
  24. A. Renaux, P. Forster, P. Larzabal, C. D. Richmond, and A. Nehorai, “A fresh look at the Bayesian bounds of the Weiss-Weinstein family,” IEEE Transactions on Signal Processing, vol. 56, no. 11, pp. 5334–5352, 2008.
  25. K. Todros and J. Tabrikian, “General classes of performance lower bounds for parameter estimation—Part II: Bayesian bounds,” IEEE Transactions on Information Theory, vol. 56, no. 10, pp. 5064–5082, 2010.
  26. E. Chaumette, A. Renaux, and M. N. El Korso, “A class of Weiss–Weinstein bounds and its relationship with the Bobrovsky–Mayer-Wolf–Zakai bounds,” IEEE Transactions on Information Theory, vol. 63, no. 4, pp. 2226–2240, 2017.
  27. O. Aharon and J. Tabrikian, “A class of Bayesian lower bounds for parameter estimation via arbitrary test-point transformation,” IEEE Transactions on Signal Processing, vol. 71, pp. 2296–2308, 2023.
  28. Z. Ben-Haim and Y. C. Eldar, “A lower bound on the Bayesian MSE based on the optimal bias function,” IEEE Transactions on Information Theory, vol. 55, no. 11, pp. 5179–5196, 2009.
  29. B. Bobrovsky, E. Mayer-Wolf, and M. Zakai, “Some classes of global Cramer-Rao bounds,” Ann. Statist., vol. 15, no. 4, pp. 1421–1438, 1987.
  30. R. Miller and C. Chang, “A modified Cramér-Rao bound and its applications (corresp.),” IEEE Transactions on Information Theory, vol. 24, no. 3, pp. 398–400, 1978.
  31. J. Tabrikian and J. Krolik, “Theoretical performance limits on tropospheric refractivity estimation using point-to-point microwave measurements,” IEEE Transactions on Antennas and Propagation, vol. 47, no. 11, pp. 1727–1734, 1999.
  32. E. Chaumette and C. Fritsche, “A general class of Bayesian lower bounds tighter than the weiss-weinstein family,” in 2018 21st International Conference on Information Fusion (FUSION), 2018, pp. 159–165.
  33. L. Bacharach, C. Fritsche, U. Orguner, and E. Chaumette, “A tighter Bayesian Cramér-Rao bound,” in 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 5277–5281.
  34. S. Bar and J. Tabrikian, “Bayesian estimation in the presence of deterministic nuisance parameters—Part I: Performance bounds,” IEEE Trans. Signal Process., vol. 63, no. 24, pp. 6632–6646, 2015.
  35. R. Ramakrishna and A. Scaglione, “A Bayesian lower bound for parameters with bounded support priors,” in 2020 54th Annual Conference on Information Sciences and Systems (CISS), 2020, pp. 1–6.
  36. T. Routtenberg and J. Tabrikian, “Bayesian periodic cramér-rao bound,” IEEE Signal Processing Letters, vol. 29, pp. 1878–1882, 2022.
Citations (2)

Summary

We haven't generated a summary for this paper yet.