Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Multi-View Collaborative Clustering (2311.12859v1)

Published 25 Oct 2023 in cs.CV and cs.LG

Abstract: Data is increasingly being collected from multiple sources and described by multiple views. These multi-view data provide richer information than traditional single-view data. Fusing the former for specific tasks is an essential component of multi-view clustering. Since the goal of multi-view clustering algorithms is to discover the common latent structure shared by multiple views, the majority of proposed solutions overlook the advantages of incorporating knowledge derived from horizontal collaboration between multi-view data and the final consensus. To fill this gap, we propose the Joint Multi-View Collaborative Clustering (JMVCC) solution, which involves the generation of basic partitions using Non-negative Matrix Factorization (NMF) and the horizontal collaboration principle, followed by the fusion of these local partitions using ensemble clustering. Furthermore, we propose a weighting method to reduce the risk of negative collaboration (i.e., views with low quality) during the generation and fusion of local partitions. The experimental results, which were obtained using a variety of data sets, demonstrate that JMVCC outperforms other multi-view clustering algorithms and is robust to noisy views.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yasser Khalafaoui (4 papers)
  2. Basarab Matei (8 papers)
  3. Nistor Grozavu (4 papers)
  4. Martino Lovisetto (5 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.