Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Data Augmentation from a Robustness Perspective (2311.12800v1)

Published 7 Sep 2023 in cs.CV and cs.AI

Abstract: In the realm of visual recognition, data augmentation stands out as a pivotal technique to amplify model robustness. Yet, a considerable number of existing methodologies lean heavily on heuristic foundations, rendering their intrinsic mechanisms ambiguous. This manuscript takes both a theoretical and empirical approach to understanding the phenomenon. Theoretically, we frame the discourse around data augmentation within game theory's constructs. Venturing deeper, our empirical evaluations dissect the intricate mechanisms of emblematic data augmentation strategies, illuminating that these techniques primarily stimulate mid- and high-order game interactions. Beyond the foundational exploration, our experiments span multiple datasets and diverse augmentation techniques, underscoring the universal applicability of our findings. Recognizing the vast array of robustness metrics with intricate correlations, we unveil a streamlined proxy. This proxy not only simplifies robustness assessment but also offers invaluable insights, shedding light on the inherent dynamics of model game interactions and their relation to overarching system robustness. These insights provide a novel lens through which we can re-evaluate model safety and robustness in visual recognition tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.