Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Improved Line-Point Low-Degree Test (2311.12752v1)

Published 21 Nov 2023 in cs.CC

Abstract: We prove that the most natural low-degree test for polynomials over finite fields is robust'' in the high-error regime for linear-sized fields. Specifically we consider thelocal'' agreement of a function $f: \mathbb{F}_qm \to \mathbb{F}_q$ from the space of degree-$d$ polynomials, i.e., the expected agreement of the function from univariate degree-$d$ polynomials over a randomly chosen line in $\mathbb{F}_qm$, and prove that if this local agreement is $\epsilon \geq \Omega((\frac{d}{q})\tau))$ for some fixed $\tau > 0$, then there is a global degree-$d$ polynomial $Q: \mathbb{F}_qm \to \mathbb{F}_q$ with agreement nearly $\epsilon$ with $f$. This settles a long-standing open question in the area of low-degree testing, yielding an $O(d)$-query robust test in the high-error'' regime (i.e., when $\epsilon < \frac{1}{2}$). The previous results in this space either required $\epsilon > \frac{1}{2}$ (Polishchuk \& Spielman, STOC 1994), or $q = \Omega(d^4)$ (Arora \& Sudan, Combinatorica 2003), or needed to measure local distance on $2$-dimensionalplanes'' rather than one-dimensional lines leading to $\Omega(d2)$-query complexity (Raz & Safra, STOC 1997). Our analysis follows the spirit of most previous analyses in first analyzing the low-variable case ($m = O(1)$) and then bootstrapping'' to general multivariate settings. Our main technical novelty is a new analysis in the bivariate setting that exploits a previously known connection between multivariate factorization and finding (or testing) low-degree polynomials, in a nonblack-box'' manner. A second contribution is a bootstrapping analysis which manages to lift analyses for $m=2$ directly to analyses for general $m$, where previous works needed to work with $m = 3$ or $m = 4$ -- arguably this bootstrapping is significantly simpler than those in prior works.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com