Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LeFi: Learn to Incentivize Federated Learning in Automotive Edge Computing (2311.12720v2)

Published 21 Nov 2023 in cs.NI

Abstract: Federated learning (FL) is the promising privacy-preserve approach to continually update the central ML model (e.g., object detectors in edge servers) by aggregating the gradients obtained from local observation data in distributed connected and automated vehicles (CAVs). The incentive mechanism is to incentivize individual selfish CAVs to participate in FL towards the improvement of overall model accuracy. It is, however, challenging to design the incentive mechanism, due to the complex correlation between the overall model accuracy and unknown incentive sensitivity of CAVs, especially under the non-independent and identically distributed (Non-IID) data of individual CAVs. In this paper, we propose a new learn-to-incentivize algorithm to adaptively allocate rewards to individual CAVs under unknown sensitivity functions. First, we gradually learn the unknown sensitivity function of individual CAVs with accumulative observations, by using compute-efficient Gaussian process regression (GPR). Second, we iteratively update the reward allocation to individual CAVs with new sampled gradients, derived from GPR. Third, we project the updated reward allocations to comply with the total budget. We evaluate the performance of extensive simulations, where the simulation parameters are obtained from realistic profiling of the CIFAR-10 dataset and NVIDIA RTX 3080 GPU. The results show that our proposed algorithm substantially outperforms existing solutions, in terms of accuracy, scalability, and adaptability.

Summary

We haven't generated a summary for this paper yet.