Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Divisible cube complexes and finite-order automorphisms of RAAGs (2311.12680v2)

Published 21 Nov 2023 in math.GR and math.GT

Abstract: We give a geometric characterisation of those groups that arise as fixed subgroups of finite-order untwisted automorphisms of right-angled Artin groups (RAAGs). They are precisely the fundamental groups of a class of compact special cube complexes that we term "divisible". The main corollary is that surface groups arise as fixed subgroups of finite-order automorphisms of RAAGs, as do all commutator subgroups of right-angled Coxeter groups. These appear to be the first examples of such fixed subgroups that are not themselves isomorphic to RAAGs. Using a variation of canonical completions, we also observe that every special group arises as the fixed subgroup of an automorphism of a finite-index subgroup of a RAAG.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Aaron David Abrams. Configuration spaces and braid groups of graphs. ProQuest LLC, Ann Arbor, MI, 2000. Thesis (Ph.D.)–University of California, Berkeley.
  2. Morse theory and finiteness properties of groups. Invent. Math., 129(3):445–470, 1997.
  3. Finite subgroups of outer automorphism groups of RAAGs I: untwisted subgroups. arXiv:2308.09222, 2023.
  4. Outer space for RAAGs. Duke Math. J., 172(6):1033–1108, 2023.
  5. Train tracks and automorphisms of free groups. Ann. of Math. (2), 135(1):1–51, 1992.
  6. A boundary criterion for cubulation. Amer. J. Math., 134(3):843–859, 2012.
  7. Automorphisms of 2-dimensional right-angled Artin groups. Geom. Topol., 11:2227–2264, 2007.
  8. On the dynamics and the fixed subgroup of a free group automorphism. Invent. Math., 96(3):613–638, 1989.
  9. Outer space for untwisted automorphisms of right-angled Artin groups. Geom. Topol., 21(2):1131–1178, 2017.
  10. Marc Culler. Finite groups of outer automorphisms of a free group. In Contributions to group theory, volume 33 of Contemp. Math., pages 197–207. Amer. Math. Soc., Providence, RI, 1984.
  11. Finiteness properties of automorphism groups of right-angled Artin groups. Bull. Lond. Math. Soc., 41(1):94–102, 2009.
  12. Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups. Algebr. Geom. Topol., 4:439–472, 2004.
  13. Michael W. Davis. Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. of Math. (2), 117(2):293–324, 1983.
  14. Michael W. Davis. The geometry and topology of Coxeter groups, volume 32 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2008.
  15. Matthew B. Day. Peak reduction and finite presentations for automorphism groups of right-angled Artin groups. Geom. Topol., 13(2):817–855, 2009.
  16. Right-angled Artin groups are commensurable with right-angled Coxeter groups. J. Pure Appl. Algebra, 153(3):229–235, 2000.
  17. The lower central series of the free partially commutative group. Semigroup Forum, 45(3):385–394, 1992.
  18. Carl Droms. A complex for right-angled Coxeter groups. Proc. Amer. Math. Soc., 131(8):2305–2311, 2003.
  19. Periodic automorphisms of free groups. Comm. Algebra, 3:195–201, 1975.
  20. Calculating the virtual cohomological dimension of the automorphism group of a RAAG. Bull. Lond. Math. Soc., 53(1):259–273, 2021.
  21. Relative automorphism groups of right-angled Artin groups. J. Topol., 12(3):759–798, 2019.
  22. Right-angled Coxeter polytopes, hyperbolic six-manifolds, and a problem of Siegel. Math. Ann., 354(3):871–905, 2012.
  23. Brent Everitt. Coxeter groups and hyperbolic manifolds. Math. Ann., 330(1):127–150, 2004.
  24. Elia Fioravanti. On automorphisms and splittings of special groups. Compos. Math., 159(2):232–305, 2023.
  25. Elia Fioravanti. Coarse-median preserving automorphisms. Geom. Topol., 28(1):161–266, 2024.
  26. Coarse cubical rigidity. arXiv:2210.11418, 2023.
  27. Anthony Genevois. Algebraic characterisation of relatively hyperbolic special groups. Israel J. Math., 241(1):301–341, 2021.
  28. Anthony Genevois. Negative curvature in graph braid groups. Internat. J. Algebra Comput., 31(1):81–116, 2021.
  29. Stephen M. Gersten. On fixed points of automorphisms of finitely generated free groups. Bull. Amer. Math. Soc. (N.S.), 8(3):451–454, 1983.
  30. Stephen M. Gersten. Fixed points of automorphisms of free groups. Adv. in Math., 64(1):51–85, 1987.
  31. Karl W. Gruenberg. Residual properties of infinite soluble groups. Proc. London Math. Soc. (3), 7:29–62, 1957.
  32. Automorphisms of free groups and their fixed points. Invent. Math., 78(1):1–12, 1984.
  33. Nielsen realisation for untwisted automorphisms of right-angled Artin groups. Proc. Lond. Math. Soc. (3), 117(5):901–950, 2018.
  34. Nielsen realization by gluing: limit groups and free products. Michigan Math. J., 67(1):199–223, 2018.
  35. Special cube complexes. Geom. Funct. Anal., 17(5):1551–1620, 2008.
  36. Surface homeomorphisms and periodicity. Topology, 16(4):347–367, 1977.
  37. Hyperbolic Coxeter groups of large dimension. Comment. Math. Helv., 78(3):555–583, 2003.
  38. Immersing almost geodesic surfaces in a closed hyperbolic three manifold. Ann. of Math. (2), 175(3):1127–1190, 2012.
  39. Michael R. Laurence. A generating set for the automorphism group of a graph group. J. London Math. Soc. (2), 52(2):318–334, 1995.
  40. Frank Löbell. Beispiele geschlossener dreidimensionaler clifford–kleinscher räume negativer krümmung. Ber. Verh. Sächs. Akad. Leipzig, 83:167–174, 1931.
  41. Damian Osajda. A construction of hyperbolic Coxeter groups. Comment. Math. Helv., 88(2):353–367, 2013.
  42. Cubulating random groups at density less than 1/6161/61 / 6. Trans. Amer. Math. Soc., 363(9):4701–4733, 2011.
  43. On right-angled reflection groups in hyperbolic spaces. Comment. Math. Helv., 80(1):63–73, 2005.
  44. Mixed 3-manifolds are virtually special. J. Amer. Math. Soc., 31(2):319–347, 2018.
  45. Herman Servatius. Automorphisms of graph groups. J. Algebra, 126(1):34–60, 1989.
  46. Emmanuel Toinet. Conjugacy p𝑝pitalic_p-separability of right-angled Artin groups and applications. Groups Geom. Dyn., 7(3):751–790, 2013.
  47. Daniel T. Wise. Cubulating small cancellation groups. Geom. Funct. Anal., 14(1):150–214, 2004.
  48. Daniel T. Wise. The structure of groups with a quasiconvex hierarchy, volume 209 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, [2021] ©2021.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com