Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum-inspired nonlinear Galerkin ansatz for high-dimensional HJB equations (2311.12239v1)

Published 20 Nov 2023 in math.NA, cs.NA, and q-fin.CP

Abstract: Neural networks are increasingly recognized as a powerful numerical solution technique for partial differential equations (PDEs) arising in diverse scientific computing domains, including quantum many-body physics. In the context of time-dependent PDEs, the dominant paradigm involves casting the approximate solution in terms of stochastic minimization of an objective function given by the norm of the PDE residual, viewed as a function of the neural network parameters. Recently, advancements have been made in the direction of an alternative approach which shares aspects of nonlinearly parametrized Galerkin methods and variational quantum Monte Carlo, especially for high-dimensional, time-dependent PDEs that extend beyond the usual scope of quantum physics. This paper is inspired by the potential of solving Hamilton-Jacobi-BeLLMan (HJB) PDEs using Neural Galerkin methods and commences the exploration of nonlinearly parametrized trial functions for which the evolution equations are analytically tractable. As a precursor to the Neural Galerkin scheme, we present trial functions with evolution equations that admit closed-form solutions, focusing on time-dependent HJB equations relevant to finance.

Summary

We haven't generated a summary for this paper yet.