Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 223 tok/s Pro
2000 character limit reached

Optimal Locally Private Nonparametric Classification with Public Data (2311.11369v3)

Published 19 Nov 2023 in stat.ML, cs.CR, and cs.LG

Abstract: In this work, we investigate the problem of public data assisted non-interactive Local Differentially Private (LDP) learning with a focus on non-parametric classification. Under the posterior drift assumption, we for the first time derive the mini-max optimal convergence rate with LDP constraint. Then, we present a novel approach, the locally differentially private classification tree, which attains the mini-max optimal convergence rate. Furthermore, we design a data-driven pruning procedure that avoids parameter tuning and provides a fast converging estimator. Comprehensive experiments conducted on synthetic and real data sets show the superior performance of our proposed methods. Both our theoretical and experimental findings demonstrate the effectiveness of public data compared to private data, which leads to practical suggestions for prioritizing non-private data collection.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube