Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete approximations of Gaussian smoothing and Gaussian derivatives (2311.11317v7)

Published 19 Nov 2023 in cs.CV, cs.NA, eess.IV, eess.SP, and math.NA

Abstract: This paper develops an in-depth treatment concerning the problem of approximating the Gaussian smoothing and Gaussian derivative computations in scale-space theory for application on discrete data. With close connections to previous axiomatic treatments of continuous and discrete scale-space theory, we consider three main ways discretizing these scale-space operations in terms of explicit discrete convolutions, based on either (i) sampling the Gaussian kernels and the Gaussian derivative kernels, (ii) locally integrating the Gaussian kernels and the Gaussian derivative kernels over each pixel support region and (iii) basing the scale-space analysis on the discrete analogue of the Gaussian kernel, and then computing derivative approximations by applying small-support central difference operators to the spatially smoothed image data. We study the properties of these three main discretization methods both theoretically and experimentally, and characterize their performance by quantitative measures, including the results they give rise to with respect to the task of scale selection, investigated for four different use cases, and with emphasis on the behaviour at fine scales. The results show that the sampled Gaussian kernels and derivatives as well as the integrated Gaussian kernels and derivatives perform very poorly at very fine scales. At very fine scales, the discrete analogue of the Gaussian kernel with its corresponding discrete derivative approximations performs substantially better. The sampled Gaussian kernel and the sampled Gaussian derivatives do, on the other hand, lead to numerically very good approximations of the corresponding continuous results, when the scale parameter is sufficiently large, in the experiments presented in the paper, when the scale parameter is greater than a value of about 1, in units of the grid spacing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (107)
  1. Handbook of Mathematical Functions. Applied Mathematics Series. National Bureau of Standards, 55 edition, 1964.
  2. K. Åström and A. Heyden. Stochastic analysis of image acquisition and scale-space smoothing. In J. Sporring, M. Nielsen, L. Florack, and P. Johansen, editors, Gaussian Scale-Space Theory: Proc. PhD School on Scale-Space Theory, pages 129–136. Springer, 1997.
  3. Synthesizing robust adversarial examples. In International Conference on Machine Learning (ICML 2018), pages 284–293, 2018.
  4. Uniqueness of the Gaussian kernel for scale-space filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1):26–33, 1986.
  5. Deep convolutional networks do not classify based on global object shape. PLoS Computational Biology, 14(12):e1006613, 2018.
  6. C. Ballester and M. Gonzalez. Affine invariant texture segmentation and shape from texture by variational methods. Journal of Mathematical Imaging and Vision, 9:141–171, 1998.
  7. A. Baumberg. Reliable feature matching across widely separated views. In Proc. Computer Vision and Pattern Recognition (CVPR’00), pages I:1774–1781, 2000.
  8. Speeded up robust features (SURF). Computer Vision and Image Understanding, 110(3):346–359, 2008.
  9. W. Beil. Steerable filters and invariance theory. Pattern Recognition Letters, 15(5):453–460, 1994.
  10. E. J. Bekkers. B-spline CNNs on Lie groups. International Conference on Learning Representations (ICLR 2020), 2020.
  11. Fast and accurate Gaussian derivatives based on B-splines. In Proc. Scale Space and Variational Methods in Computer Vision (SSVM 2007), pages 406–417, 2007. Springer LNCS volume 4485.
  12. L. Bretzner and T. Lindeberg. Feature tracking with automatic selection of spatial scales. Computer Vision and Image Understanding, 71(3):385–392, Sep. 1998.
  13. The Laplacian pyramid as a compact image code. IEEE Trans. Communications, 9(4):532–540, 1983.
  14. D. Charalampidis. Recursive implementation of the Gaussian filter using truncated cosine functions. IEEE Transactions on Signal Processing, 64(14):3554–3565, 2016.
  15. Local scale selection for Gaussian based description techniques. In Proc. European Conf. on Computer Vision (ECCV 2000), volume 1842 of Springer LNCS, pages 117–133, Dublin, Ireland, 2000. Springer.
  16. J. L. Crowley and O. Riff. Fast computation of scale normalised Gaussian receptive fields. In L. Griffin and M. Lillholm, editors, Proc. Scale-Space Methods in Computer Vision (Scale-Space’03), volume 2695 of Springer LNCS, pages 584–598, Isle of Skye, Scotland, 2003. Springer.
  17. Fast computation of the Difference of Low Pass Transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(2):212–222, 1984.
  18. Boosting feature matching accuracy with pairwise affine estimation. IEEE Transactions on Image Processing, 29:8278–8291, 2020.
  19. R. Deriche. Recursively implementing the Gaussian and its derivatives. In Proc. International Conference on Image Processing (ICIP’92), pages 263–267, 1992.
  20. On the axioms of scale space theory. Journal of Mathematical Imaging and Vision, 20(3):267–298, 2004.
  21. I. Eichhardt and D. Chetverikov. Affine correspondences between central cameras for rapid relative pose estimation. In Proc. European Conference on Computer Vision (ECCV 2018), volume 11210 of Springer LNCS, pages 482–497, 2018.
  22. G. Farnebäck and C.-F. Westin. Improving Deriche-style recursive Gaussian filters. Journal of Mathematical Imaging and Vision, 26(3):293–299, 2006.
  23. Linear multiscale analysis of similarities between images on Riemannian manifolds: Practical formula and affine covariant metrics. SIAM Journal on Imaging Sciences, 8(3):2021–2069, 2015.
  24. L. M. J. Florack. Image Structure. Series in Mathematical Imaging and Vision. Springer, 1997.
  25. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9):891–906, Sep. 1991.
  26. H. Gavilima-Pilataxi and J. Ibarra-Fiallo. Multi-channel Gaussian derivative neural networks for crowd analysis. In Proc. International Conference on Pattern Recognition Systems (ICPRS 2023), pages 1–7, 2023.
  27. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018.
  28. Fast anisotropic Gauss filtering. IEEE Transactions on Image Processing, 12(8):938–943, 2003.
  29. Probabilistic tracking of affine-invariant anisotropic regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1):130–143, 2013.
  30. Y. Hel-Or and P. C. Teo. Canonical decomposition of steerable functions. Journal of Mathematical Imaging and Vision, 9(1):83–95, 1998.
  31. Natural adversarial examples. In Proc. Computer Vision and Pattern Recognition (CVPR 2021), pages 15262–15271, 2021.
  32. The origins and prevalence of texture bias in convolutional neural networks. Proc. Neural Information Processing Systems (NeurIPS 2020), 33:19000–19015, 2020.
  33. T. Iijima. Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bulletin of the Electrotechnical Laboratory, 26:368–388, 1962. (in Japanese).
  34. Structured receptive fields in CNNs. In Proc. Computer Vision and Pattern Recognition (CVPR 2016), pages 2610–2619, 2016.
  35. Improved anisotropic Gaussian filters. arXiv preprint arXiv:2303.13278, 2023.
  36. J. J. Koenderink. The structure of images. Biological Cybernetics, 50(5):363–370, 1984.
  37. J. J. Koenderink and A. J. van Doorn. Representation of local geometry in the visual system. Biological Cybernetics, 55(6):367–375, 1987.
  38. J. J. Koenderink and A. J. van Doorn. Generic neighborhood operators. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(6):597–605, Jun. 1992.
  39. C. H. Lampert and O. Wirjadi. An optimal nonorthogonal separation of the anisotropic Gaussian convolution filter. IEEE Transactions on Image Processing, 15(11):3501–3513, 2006.
  40. A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):1265–1278, 2005.
  41. O. Li and P.-L. Shui. Subpixel blob localization and shape estimation by gradient search in parameter space of anisotropic Gaussian kernels. Signal Processing, 171:107495, 2020.
  42. An improvement to the SIFT descriptor for image representation and matching. Pattern Recognition Letters, 34(11):1211–1220, 2013.
  43. A generalized discrete scale-space formulation for 2-D and 3-D signals. In International Conference on Scale-Space Theories in Computer Vision (Scale-Space’03), pages 132–147, 2003. Springer LNCS volume 2695.
  44. O. Linde and T. Lindeberg. Composed complex-cue histograms: An investigation of the information content in receptive field based image descriptors for object recognition. Computer Vision and Image Understanding, 116(4):538–560, 2012.
  45. T. Lindeberg. Scale-space for discrete signals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(3):234–254, Mar. 1990.
  46. T. Lindeberg. Scale-Space Theory in Computer Vision. Springer, 1993a.
  47. T. Lindeberg. Discrete derivative approximations with scale-space properties: A basis for low-level feature extraction. Journal of Mathematical Imaging and Vision, 3(4):349–376, Nov. 1993b.
  48. T. Lindeberg. Scale-space theory: A basic tool for analysing structures at different scales. Journal of Applied Statistics, 21(2):225–270, 1994. Also available from http://www.csc.kth.se/∼similar-to\sim∼tony/abstracts/Lin94-SI-abstract.html.
  49. T. Lindeberg. On the axiomatic foundations of linear scale-space. In J. Sporring, M. Nielsen, L. Florack, and P. Johansen, editors, Gaussian Scale-Space Theory: Proc. PhD School on Scale-Space Theory, pages 75–97, Copenhagen, Denmark, May. 1996. Springer.
  50. T. Lindeberg. Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2):77–116, 1998a.
  51. T. Lindeberg. Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision, 30(2):117–154, 1998b.
  52. T. Lindeberg. Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. Journal of Mathematical Imaging and Vision, 40(1):36–81, 2011.
  53. T. Lindeberg. Scale selection properties of generalized scale-space interest point detectors. Journal of Mathematical Imaging and Vision, 46(2):177–210, 2013a.
  54. T. Lindeberg. A computational theory of visual receptive fields. Biological Cybernetics, 107(6):589–635, 2013b.
  55. T. Lindeberg. Image matching using generalized scale-space interest points. Journal of Mathematical Imaging and Vision, 52(1):3–36, 2015.
  56. T. Lindeberg. Discrete approximations of the affine Gaussian derivative model for visual receptive fields. arXiv preprint arXiv:1701.02127, 2017.
  57. T. Lindeberg. Scale selection. In K. Ikeuchi, editor, Computer Vision, pages 1110–1123. Springer, 2021a. https://doi.org/10.1007/978-3-030-03243-2_242-1.
  58. T. Lindeberg. Normative theory of visual receptive fields. Heliyon, 7(1):e05897:1–20, 2021b. doi: 10.1016/j.heliyon.2021.e05897.
  59. T. Lindeberg. Scale-covariant and scale-invariant Gaussian derivative networks. In Proc. Scale Space and Variational Methods in Computer Vision (SSVM 2021), volume 12679 of Springer LNCS, pages 3–14, 2021c.
  60. T. Lindeberg. Scale-covariant and scale-invariant Gaussian derivative networks. Journal of Mathematical Imaging and Vision, 64(3):223–242, 2022.
  61. T. Lindeberg. Approximation properties relative to continuous scale space for hybrid discretizations of Gaussian derivative operators. arXiv preprint arXiv:2405.05095, 2024.
  62. T. Lindeberg and L. Bretzner. Real-time scale selection in hybrid multi-scale representations. In L. Griffin and M. Lillholm, editors, Proc. Scale-Space Methods in Computer Vision (Scale-Space’03), volume 2695 of Springer LNCS, pages 148–163, Isle of Skye, Scotland, 2003. Springer.
  63. T. Lindeberg and J. Gårding. Shape-adapted smoothing in estimation of 3-D shape cues from affine distortions of local 2-D structure. Image and Vision Computing, 15(6):415–434, 1997.
  64. D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91–110, 2004.
  65. K. Mikolajczyk and C. Schmid. Scale and affine invariant interest point detectors. International Journal of Computer Vision, 60(1):63–86, 2004.
  66. A comparison of affine region detectors. International Journal of Computer Vision, 65(1–2):43–72, 2005.
  67. Universal adversarial perturbations. In Proc. Computer Vision and Pattern Recognition (CVPR 2017), 2017.
  68. J.-M. Morel and G. Yu. ASIFT: A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2(2):438–469, 2009.
  69. Automatic differentiation in PyTorch. Proc. Neural Information Processing Systems (NIPS 2017), 2017.
  70. An extended class of scale-invariant and recursive scale-space filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(7):691–701, 1995.
  71. Fully trainable Gaussian derivative convolutional layer. In International Conference on Image Processing (ICIP 2022), pages 2421–2425, 2022.
  72. P. Perona. Steerable-scalable kernels for edge detection and junction analysis. In Proc. European Conf. on Computer Vision (ECCV’92), volume 588 of Springer LNCS, pages 3–18, Santa Margherita Ligure, Italy, May. 1992.
  73. P. Perona. Deformable kernels for early vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(5):488–499, 1995.
  74. Resolution learning in deep convolutional networks using scale-space theory. IEEE Trans. Image Processing, 30:8342–8353, 2021.
  75. I. Rey-Otero and M. Delbracio. Computing an exact Gaussian scale-space. Image Processing On Line, 6:8–26, 2016.
  76. Covering the space of tilts: Application to affine invariant image comparison. SIAM Journal on Imaging Sciences, 11(2):1230–1267, 2018.
  77. 3D object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. International Journal of Computer Vision, 66(3):231–259, 2006.
  78. Segmenting, modeling, and matching video clips containing multiple moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3):477–491, 2007.
  79. On affine invariant descriptors related to SIFT. SIAM Journal on Imaging Sciences, 5(2):652–687, 2012.
  80. Scale equivariant U-net. In Proc. British Machine Vision Conference (BMVC 2022), 2022.
  81. B. Schiele and J. Crowley. Recognition without correspondence using multidimensional receptive field histograms. International Journal of Computer Vision, 36(1):31–50, 2000.
  82. E. P. Simoncelli and H. Farid. Steerable wedge filters for local orientation analysis. IEEE Transactions on Image Processing, 5(9):1377–1382, 1996.
  83. The steerable pyramid: A flexible architecture for multi-scale derivative computation. In Proc. International Conference on Image Processing (ICIP’95), Washington DC, 1995.
  84. Shiftable multi-scale transforms. IEEE Trans. Information Theory, 38(2):587–607, 1992.
  85. A. Slavík and P. Stehlík. Dynamic diffusion-type equations on discrete-space domains. Journal of Mathematical Analysis and Applications, 427(1):525–545, 2015.
  86. Gaussian Scale-Space Theory: Proc. PhD School on Scale-Space Theory. Series in Mathematical Imaging and Vision. Springer, Copenhagen, Denmark, 1997.
  87. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.
  88. B. ter Haar Romeny. Front-End Vision and Multi-Scale Image Analysis. Springer, 2003.
  89. M. Tschirsich and A. Kuijper. Notes on discrete Gaussian scale space. Journal of Mathematical Imaging and Vision, 51:106–123, 2015.
  90. G. Turin. An introduction to matched filters. IRE Transactions on Information Theory, 6(3):311–329, 1960.
  91. T. Tuytelaars and K. Mikolajczyk. A Survey on Local Invariant Features, volume 3(3) of Foundations and Trends in Computer Graphics and Vision. Now Publishers, 2008.
  92. T. Tuytelaars and L. van Gool. Matching widely separated views based on affine invariant regions. International Journal of Computer Vision, 59(1):61–85, 2004.
  93. Fast B-spline transforms for continuous image representation and interpolation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3):277–285, 1991.
  94. B-spline signal processing. i. theory. IEEE Transactions on Signal Processing, 41(2):821–833, 1993.
  95. Recursive Gaussian derivative filters. In International Conference on Pattern Recognition, volume 1, pages 509–514, 1998.
  96. Subtle adversarial image manipulations influence both human and machine perception. Nature Communications, 14(1):4933, 2023.
  97. Y.-P. Wang. Image representations using multiscale differential operators. IEEE Transactions on Image Processing, 8(12):1757–1771, 1999.
  98. Scale-space derived from B-splines. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(10):1040–1055, 1998.
  99. Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision, 10(3):237–252, 1999.
  100. A. P. Witkin. Scale-space filtering. In Proc. 8th Int. Joint Conf. Art. Intell., pages 1019–1022, Karlsruhe, Germany, Aug. 1983.
  101. P. M. Woodward. Probability and information theory, with applications to radar, volume 3. Pergamon Press, 1953.
  102. I. T. Young and L. J. van Vliet. Recursive implementation of the Gaussian filter. Signal Processing, 44(2):139–151, 1995.
  103. R. A. Young. The Gaussian derivative theory of spatial vision: Analysis of cortical cell receptive field line-weighting profiles. Technical Report GMR-4920, Computer Science Department, General Motors Research Lab., Warren, Michigan, 1985.
  104. R. A. Young. The Gaussian derivative model for spatial vision: I. Retinal mechanisms. Spatial Vision, 2(4):273–293, 1987.
  105. G. Yu and J.-M. Morel. A fully affine invariant image comparison method. In Proc. International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009), pages 1597–1600, 2009.
  106. Scaling theorems for zero-crossings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1):15–25, 1986.
  107. A unified B-spline framework for scale-invariant keypoint detection. International Journal of Computer Vision, 130(3):777–799, 2022.
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com