Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Utilizing Speech Emotion Recognition and Recommender Systems for Negative Emotion Handling in Therapy Chatbots (2311.11116v1)

Published 18 Nov 2023 in cs.CL and cs.AI

Abstract: Emotional well-being significantly influences mental health and overall quality of life. As therapy chatbots become increasingly prevalent, their ability to comprehend and respond empathetically to users' emotions remains limited. This paper addresses this limitation by proposing an approach to enhance therapy chatbots with auditory perception, enabling them to understand users' feelings and provide human-like empathy. The proposed method incorporates speech emotion recognition (SER) techniques using Convolutional Neural Network (CNN) models and the ShEMO dataset to accurately detect and classify negative emotions, including anger, fear, and sadness. The SER model achieves a validation accuracy of 88%, demonstrating its effectiveness in recognizing emotional states from speech signals. Furthermore, a recommender system is developed, leveraging the SER model's output to generate personalized recommendations for managing negative emotions, for which a new bilingual dataset was generated as well since there is no such dataset available for this task. The recommender model achieves an accuracy of 98% by employing a combination of global vectors for word representation (GloVe) and LSTM models. To provide a more immersive and empathetic user experience, a text-to-speech model called GlowTTS is integrated, enabling the therapy chatbot to audibly communicate the generated recommendations to users in both English and Persian. The proposed approach offers promising potential to enhance therapy chatbots by providing them with the ability to recognize and respond to users' emotions, ultimately improving the delivery of mental health support for both English and Persian-speaking users.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Farideh Majidi (2 papers)
  2. Marzieh Bahrami (1 paper)