Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Simplified algorithm for the Worldvolume HMC and the Generalized-thimble HMC (2311.10663v4)

Published 17 Nov 2023 in hep-lat, hep-th, and physics.comp-ph

Abstract: The Worldvolume Hybrid Monte Carlo method (WV-HMC method) [arXiv:2012.08468] is a reliable and versatile algorithm towards solving the sign problem. Similarly to the tempered Lefschetz thimble method, this method removes the ergodicity problem inherent in algorithms based on Lefschetz thimbles. In addition to this advantage, the WV-HMC method significantly reduces the computational cost because one needs not compute the Jacobian of deformation in generating configurations. A crucial step in this method is the RATTLE algorithm, where the Newton method is used at each molecular dynamics step to project a transported configuration onto a submanifold (worldvolume) in the complex space. In this paper, we simplify the RATTLE algorithm by employing a simplified Newton method (the fixed-point method) along with iterative solvers for orthogonal decompositions of vectors, and show that this algorithm further reduces the computational cost. We also apply this algorithm to the HMC algorithm for the generalized thimble method (GT-HMC method). We perform a numerical test for the convergence of the simplified RATTLE algorithm, and show that the convergence depends on the system size only weakly. The application of this simplified algorithm to various models will be reported in subsequent papers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. G. Parisi, “On complex probabilities,” Phys. Lett. B 131, 393 (1983).
  2. J.R. Klauder, “Coherent State Langevin Equations for Canonical Quantum Systems With Applications to the Quantized Hall Effect,” Phys. Rev. A 29, 2036 (1984).
  3. G. Aarts, “Can stochastic quantization evade the sign problem? The relativistic Bose gas at finite chemical potential,” Phys. Rev. Lett. 102, 131601 (2009) [arXiv:0810.2089 [hep-lat]].
  4. G. Aarts, E. Seiler and I. O. Stamatescu, “The Complex Langevin method: When can it be trusted?,” Phys. Rev. D 81, 054508 (2010) [arXiv:0912.3360 [hep-lat]].
  5. G. Aarts, F. A. James, E. Seiler and I. O. Stamatescu, “Complex Langevin: Etiology and Diagnostics of its Main Problem,” Eur. Phys. J. C 71, 1756 (2011) [arXiv:1101.3270 [hep-lat]].
  6. K. Nagata, J. Nishimura and S. Shimasaki, “Argument for justification of the complex Langevin method and the condition for correct convergence,” Phys. Rev. D 94, no.11, 114515 (2016) [arXiv:1606.07627 [hep-lat]].
  7. E. Witten, “Analytic continuation of Chern-Simons theory,” AMS/IP Stud. Adv. Math. 50, 347-446 (2011) [arXiv:1001.2933 [hep-th]].
  8. M. Cristoforetti, F. Di Renzo and L. Scorzato, “New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble,” Phys. Rev. D 86, 074506 (2012) [arXiv:1205.3996 [hep-lat]].
  9. M. Cristoforetti, F. Di Renzo, A. Mukherjee and L. Scorzato, “Monte Carlo simulations on the Lefschetz thimble: Taming the sign problem,” Phys. Rev. D 88, no. 5, 051501(R) (2013) [arXiv:1303.7204 [hep-lat]].
  10. H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu and T. Sano, “Hybrid Monte Carlo on Lefschetz thimbles - A study of the residual sign problem,” JHEP 1310, 147 (2013) [arXiv:1309.4371 [hep-lat]].
  11. H. Fujii, S. Kamata and Y. Kikukawa, “Lefschetz thimble structure in one-dimensional lattice Thirring model at finite density,” JHEP 11, 078 (2015) [erratum: JHEP 02, 036 (2016)] [arXiv:1509.08176 [hep-lat]].
  12. H. Fujii, S. Kamata and Y. Kikukawa, “Monte Carlo study of Lefschetz thimble structure in one-dimensional Thirring model at finite density,” JHEP 12, 125 (2015) [erratum: JHEP 09, 172 (2016)] [arXiv:1509.09141 [hep-lat]].
  13. A. Alexandru, G. Başar and P. Bedaque, “Monte Carlo algorithm for simulating fermions on Lefschetz thimbles,” Phys. Rev. D 93, no. 1, 014504 (2016) [arXiv:1510.03258 [hep-lat]].
  14. A. Alexandru, G. Başar, P. F. Bedaque, G. W. Ridgway and N. C. Warrington, “Sign problem and Monte Carlo calculations beyond Lefschetz thimbles,” JHEP 1605, 053 (2016) [arXiv:1512.08764 [hep-lat]].
  15. M. Fukuma and N. Umeda, “Parallel tempering algorithm for integration over Lefschetz thimbles,” PTEP 2017, no. 7, 073B01 (2017) [arXiv:1703.00861 [hep-lat]].
  16. A. Alexandru, G. Başar, P. F. Bedaque and N. C. Warrington, “Tempered transitions between thimbles,” Phys. Rev. D 96, no. 3, 034513 (2017) [arXiv:1703.02414 [hep-lat]].
  17. A. Alexandru, G. Başar, P. F. Bedaque and G. W. Ridgway, “Schwinger-Keldysh formalism on the lattice: A faster algorithm and its application to field theory,” Phys. Rev. D 95, no.11, 114501 (2017) [arXiv:1704.06404 [hep-lat]].
  18. M. Fukuma, N. Matsumoto and N. Umeda, “Applying the tempered Lefschetz thimble method to the Hubbard model away from half filling,” Phys. Rev. D 100, no. 11, 114510 (2019) [arXiv:1906.04243 [cond-mat.str-el]].
  19. A. Alexandru, “Improved algorithms for generalized thimble method,” talk at the 37th international conference on lattice field theory, Wuhan, 2019.
  20. M. Fukuma, N. Matsumoto and N. Umeda, “Implementation of the HMC algorithm on the tempered Lefschetz thimble method,” [arXiv:1912.13303 [hep-lat]].
  21. M. Fukuma and N. Matsumoto, “Worldvolume approach to the tempered Lefschetz thimble method,” PTEP 2021, no.2, 023B08 (2021) [arXiv:2012.08468 [hep-lat]].
  22. M. Fukuma, N. Matsumoto and Y. Namekawa, “Statistical analysis method for the worldvolume hybrid Monte Carlo algorithm,” PTEP 2021, no.12, 123B02 (2021) [arXiv:2107.06858 [hep-lat]].
  23. Y. Mori, K. Kashiwa and A. Ohnishi, “Toward solving the sign problem with path optimization method,” Phys. Rev. D 96, no.11, 111501 (2017) [arXiv:1705.05605 [hep-lat]].
  24. Y. Mori, K. Kashiwa and A. Ohnishi, “Application of a neural network to the sign problem via the path optimization method,” PTEP 2018, no.2, 023B04 (2018) [arXiv:1709.03208 [hep-lat]].
  25. A. Alexandru, P. F. Bedaque, H. Lamm and S. Lawrence, “Finite-Density Monte Carlo Calculations on Sign-Optimized Manifolds,” Phys. Rev. D 97, no.9, 094510 (2018) [arXiv:1804.00697 [hep-lat]].
  26. F. Bursa and M. Kroyter, “A simple approach towards the sign problem using path optimisation,” JHEP 12, 054 (2018) [arXiv:1805.04941 [hep-lat]].
  27. M. Levin and C. P. Nave, “Tensor renormalization group approach to 2D classical lattice models,” Phys. Rev. Lett. 99, 120601 (2007) [arXiv:cond-mat/0611687 [cond-mat.stat-mech]].
  28. D. Adachi, T. Okubo and S. Todo, “Anisotropic Tensor Renormalization Group,” Phys. Rev. B 102, no.5, 054432 (2020) [arXiv:1906.02007 [cond-mat.stat-mech]].
  29. Y. Shimizu and Y. Kuramashi, “Grassmann tensor renormalization group approach to one-flavor lattice Schwinger model,” Phys. Rev. D 90, no.1, 014508 (2014) [arXiv:1403.0642 [hep-lat]].
  30. S. Akiyama and D. Kadoh, “More about the Grassmann tensor renormalization group,” JHEP 10, 188 (2021) [arXiv:2005.07570 [hep-lat]].
  31. H. C. Andersen, “RATTLE: A “velocity” version of the SHAKE algorithm for molecular dynamics calculations,” J. Comput. Phys. 52, 24 (1983).
  32. B. J. Leimkuhler and R. D. Skeel, “Symplectic numerical integrators in constrained Hamiltonian systems,” J. Comput. Phys. 112, 117 (1994).
  33. M. Fukuma and Y. Namekawa, “Applying the Worldvolume Hybrid Monte Carlo method to the complex scalar field theory at finite density,” in preparation.
  34. M. Fukuma and Y. Namekawa, “Applying the Worldvolume Hybrid Monte Carlo method to dynamical fermion systems,” in preparation.
  35. M. Fukuma, “Worldvolume Hybrid Monte Carlo algorithm for group manifolds,” in preparation.
  36. M. Cristoforetti, F. Di Renzo, G. Eruzzi, A. Mukherjee, C. Schmidt, L. Scorzato and C. Torrero, “An efficient method to compute the residual phase on a Lefschetz thimble,” Phys. Rev. D 89, no.11, 114505 (2014) [arXiv:1403.5637 [hep-lat]].
  37. E. Hairer, S. P. Nørsett, G. Wanner, “Solving Ordinary Differential Equations I,” Springer Series in Computational Mathematics 8, Springer (2009).
  38. A. Alexandru, G. Başar, P. F. Bedaque, S. Vartak and N. C. Warrington, “Monte Carlo Study of Real Time Dynamics on the Lattice,” Phys. Rev. Lett. 117, no.8, 081602 (2016) [arXiv:1605.08040 [hep-lat]].
  39. Z. G. Mou, P. M. Saffin, A. Tranberg and S. Woodward, “Real-time quantum dynamics, path integrals and the method of thimbles,” JHEP 06, 094 (2019) [arXiv:1902.09147 [hep-lat]].
  40. Z. G. Mou, P. M. Saffin and A. Tranberg, “Quantum tunnelling, real-time dynamics and Picard-Lefschetz thimbles,” JHEP 11, 135 (2019) [arXiv:1909.02488 [hep-th]].
  41. J. Nishimura, K. Sakai and A. Yosprakob, “A new picture of quantum tunneling in the real-time path integral from Lefschetz thimble calculations,” JHEP 09, 110 (2023) [arXiv:2307.11199 [hep-th]].
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com