Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IterCQR: Iterative Conversational Query Reformulation with Retrieval Guidance (2311.09820v2)

Published 16 Nov 2023 in cs.IR

Abstract: Conversational search aims to retrieve passages containing essential information to answer queries in a multi-turn conversation. In conversational search, reformulating context-dependent conversational queries into stand-alone forms is imperative to effectively utilize off-the-shelf retrievers. Previous methodologies for conversational query reformulation frequently depend on human-annotated rewrites. However, these manually crafted queries often result in sub-optimal retrieval performance and require high collection costs. To address these challenges, we propose Iterative Conversational Query Reformulation (IterCQR), a methodology that conducts query reformulation without relying on human rewrites. IterCQR iteratively trains the conversational query reformulation (CQR) model by directly leveraging information retrieval (IR) signals as a reward. Our IterCQR training guides the CQR model such that generated queries contain necessary information from the previous dialogue context. Our proposed method shows state-of-the-art performance on two widely-used datasets, demonstrating its effectiveness on both sparse and dense retrievers. Moreover, IterCQR exhibits superior performance in challenging settings such as generalization on unseen datasets and low-resource scenarios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yunah Jang (4 papers)
  2. Kang-il Lee (7 papers)
  3. Hyunkyung Bae (6 papers)
  4. Hwanhee Lee (36 papers)
  5. Kyomin Jung (76 papers)
Citations (4)