Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Feedback Optimization via Sensitivity Decoupling: Stability and Sub-optimality (2311.09408v2)

Published 15 Nov 2023 in math.OC, cs.SY, and eess.SY

Abstract: Online feedback optimization is a controller design paradigm for optimizing the steady-state behavior of a dynamical system. It employs an optimization algorithm as a dynamic feedback controller and utilizes real-time measurements to bypass knowing exact plant dynamics and disturbances. Different from existing centralized settings, we present a fully decentralized feedback optimization controller for networked systems to lift the communication burden and improve scalability. We approximate the overall input-output sensitivity matrix through its diagonal elements, which capture local model information. For the closed-loop behavior, we characterize the stability and bound the sub-optimality due to decentralization. We prove that the proposed decentralized controller yields solutions that correspond to the Nash equilibria of a non-cooperative game.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. L. Ortmann, A. Hauswirth, I. Caduff, F. Dörfler, and S. Bolognani, “Experimental validation of feedback optimization in power distribution grids,” Electric Power Systems Research, vol. 189, pp. 106–782, 2020.
  2. E. Dall’Anese, “Optimal power flow pursuit,” in Proceedings of American Control Conference, 2016, pp. 1767–1767.
  3. A. Hauswirth, Z. He, S. Bolognani, G. Hug, and F. Dörfler, “Optimization algorithms as robust feedback controllers,” Annual Reviews in Control, vol. 57, p. 100941, 2024.
  4. J. W. Simpson-Porco, “Analysis and synthesis of low-gain integral controllers for nonlinear systems,” IEEE Transactions on Automatic Control, vol. 66, no. 9, pp. 4148–4159, 2021.
  5. A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, “Timescale separation in autonomous optimization,” IEEE Transactions on Automatic Control, vol. 66, no. 2, pp. 611–624, 2021.
  6. M. Picallo, S. Bolognani, and F. Dörfler, “Closing the loop: Dynamic state estimation and feedback optimization of power grids,” Electric Power Systems Research, vol. 189, pp. 106–753, 2020.
  7. G. Belgioioso, D. Liao-McPherson, M. H. de Badyn, S. Bolognani, J. Lygeros, and F. Dörfler, “Sampled-data online feedback equilibrium seeking: Stability and tracking,” in Proceedings of 60th IEEE Conference on Decision and Control, 2021, pp. 2702–2708.
  8. G. Belgioioso, D. Liao-McPherson, M. H. de Badyn, S. Bolognani, R. S. Smith, J. Lygeros, and F. Dörfler, “Online feedback equilibrium seeking,” arXiv preprint arXiv:2210.12088, 2022.
  9. V. Häberle, A. Hauswirth, L. Ortmann, S. Bolognani, and F. Dörfler, “Non-convex feedback optimization with input and output constraints,” IEEE Control Systems Letters, vol. 5, no. 1, pp. 343–348, 2021.
  10. Z. He, S. Bolognani, J. He, F. Dörfler, and X. Guan, “Model-free nonlinear feedback optimization,” IEEE Transactions on Automatic Control, pp. 1–16, 2023.
  11. M. Picallo, L. Ortmann, S. Bolognani, and F. Dörfler, “Adaptive real-time grid operation via online feedback optimization with sensitivity estimation,” Electric Power Systems Research, vol. 212, p. 108405, 2022.
  12. Y. Zhang, Y. Zhou, K. Ji, and M. M. Zavlanos, “A new one-point residual-feedback oracle for black-box learning and control,” Automatica, vol. 136, p. 110006, 2022.
  13. A. M. Ospina, Y. Chen, A. Bernstein, and E. Dall’Anese, “Learning-based demand response in grid-interactive buildings via gaussian processes,” Electric Power Systems Research, vol. 211, p. 108406, 2022.
  14. Y. Tang, J. Zhang, and N. Li, “Distributed zero-order algorithms for nonconvex multiagent optimization,” IEEE Transactions on Control of Network Systems, vol. 8, no. 1, pp. 269–281, 2020.
  15. Y. Tang, Z. Ren, and N. Li, “Zeroth-order feedback optimization for cooperative multi-agent systems,” Automatica, vol. 148, p. 110741, 2023.
  16. G. Carnevale, N. Mimmo, and G. Notarstefano, “Nonconvex distributed feedback optimization for aggregative cooperative robotics,” arXiv preprint arXiv:2302.01892, 2023.
  17. P. Chanfreut, J. M. Maestre, and E. F. Camacho, “A survey on clustering methods for distributed and networked control systems,” Annual Reviews in Control, vol. 52, pp. 75–90, 2021.
  18. W. Ananduta and C. Ocampo-Martinez, “Decentralized energy management of power networks with distributed generation using periodical self-sufficient repartitioning approach,” in 2019 American Control Conference, 2019, pp. 3230–3235.
  19. S. Bansal, M. N. Zeilinger, and C. J. Tomlin, “Plug-and-play model predictive control for electric vehicle charging and voltage control in smart grids,” in 53rd IEEE Conference on Decision and Control, 2014, pp. 5894–5900.
  20. A. Hauswirth, F. Dörfler, and A. Teel, “Anti-windup approximations of oblique projected dynamics for feedback-based optimization,” arXiv preprint arXiv:2003.00478, 2020.
  21. F. Facchinei and C. Kanzow, “Generalized Nash equilibrium problems,” Annals of Operations Research, vol. 175, no. 1, pp. 177–211, 2010.
  22. J. Zhao and F. Dörfler, “Distributed control and optimization in DC microgrids,” Automatica, vol. 61, pp. 18–26, 2015.
Citations (2)

Summary

We haven't generated a summary for this paper yet.